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Abstract

Lighting load accounts for a significant portion of overall energy consumption in office build-
ings. To reduce this load, we have designed and built a smart self-calibrating lighting control
system that minimizes power consumption that automatically responds to changes in daylight
and occupancy, while simultaneously providing personalized lighting comfort to each occupant.
The system measures illuminance and occupancy from sensors located at each work station. Us-
ing an unobtrusive self-calibration process, it estimates the relationship between the dimming
level of each bulb and the illuminance at each work station. Subsequently, an adaptive control
algorithm maintains the desired illuminance at work surfaces despite environmental fluctuations
by periodically recalculating the power-efficient and comfort-preserving dimming level for each
bulb. Based on a realistic deployment of our system, we find that our system quickly responds
to changes in occupancy, daylight and user preferences. We also show, through extensive simu-
lations using 7 months of collected daylight and occupancy data, that our system reduces energy
consumption by about 40% compared to conventional LED lighting systems.

Keywords: Building lighting, Efficiency, Control

1. Introduction1

Artificial lighting accounts for about 17% of overall electrical load in commercial office2

buildings in the United States [1]. It is important to reduce this load and its associated carbon3

footprint, ideally without compromising the comfort of building occupants. The primary ap-4

proach to reducing lighting load is to replace incandescent and compact fluorescent bulbs1 with5

energy-efficient LED bulbs [2]. Recently, commercially-available bulbs such as the Philips Hue-6

and the Sylvania SMART+ allow the luminous output of individual LED bulbs to be controlled7

using software. This allows a further reduction in lighting load by adapting the level of illumina-8

tion to occupancy changes and availability of daylight (also known as daylight harvesting), and9

is the focus of our work.10

Lighting systems capable of occupancy detection and daylight harvesting have been studied11

over the past decade or so [3, 4, 5, 6, 7, 8]. Although these systems demonstrate that a reduction12

in energy of up to 61% is feasible [8], they have not been widely deployed for a variety of reasons,13

including difficulty of installation, the need for manual calibration and re-calibration, a high up-14

front cost, and the complexity of integration with other building systems [9, 10]. Moreover,15

1One or more bulbs in a single lighting fixture is termed a ‘luminaire’ in the literature. Our work deals with luminaires
with single bulbs, so we use the term ’bulb’ exclusively in the sequel.
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despite a study by Newsham et al. [11] that suggests that the illuminance on a work surface is16

the main determinant of occupant comfort, most existing systems measure illuminance not at a17

work surface, but at the lighting fixtures [3, 8, 5, 12] or on walls [13], deducing the illuminance18

on the desktop. This computation is necessarily flawed, reducing user comfort [14, 15, 16].19

We present a power-efficient smart lighting control system that is both self-calibrating and20

easy to deploy. We deploy low-cost light and occupancy sensors adjacent to each work station21

and allow a personalized lighting level at each station to be chosen by a user (or the set of users22

sharing a common space). We then periodically compute a nearly optimal dimming level of each23

bulb using a linear program, whose objective is to minimize power consumption subject to user24

comfort requirements. To account for modeling and calibration errors, we use a feedback control25

algorithm that converges dimming levels despite these errors.26

We have implemented a prototype of our system and evaluate it in a realistic setting (please27

see Figure 1 for a schematic of the system, and Figures 5 and 6 for images of the system we28

deployed and evaluated). We demonstrate that it reacts to changes in daylight conditions in29

under 2 seconds, and to changes in occupancy in about 350 milliseconds. Extensive simulations30

suggest that, in our experimental setting, it utilizes 40% less power compared to a conventional31

lighting system2.32

This paper represents four years of work in design, analysis, implementation, and perfor-33

mance tuning of our system. Our main contributions are:34

• We have designed a power-efficient lighting system that exploits daylight and occupancy35

information to minimize energy consumption while satisfying the individual lighting pref-36

erences of all occupants.37

• We have implemented the system with off-the-shelf components and deployed it in a real-38

istic environment.39

• We have evaluated the performance of our system using both laboratory experiments and40

simulations based on 7 months of collected daylight and occupancy data. These demon-41

strate the system’s functionality, responsiveness, and ability to reduce energy consumption42

compared to existing systems.43

The rest of this paper is structured as follows. In Sections 3 and 4 we formulate a mathemat-44

ical bulb model and discuss the design of our smart lighting system. System implementation is45

outlined in Section 5. In Section 6 we evaluate the system’s performance. Section 2 presents an46

overview of prior work and Section 7 concludes.47

2. Related Work48

2.1. Surveys on lighting control systems49

Several recent papers have surveyed work in lighting control systems in office buildings [17,50

10, 18, 19, 9, 20, 21]. These surveys describe systems that incorporate fixture-based light sen-51

sors [3, 22, 23, 12, 24, 25, 15, 26] and closed-loop control systems [15, 14, 25, 12, 27, 28].52

Given the existence of multiple recent surveys of this area, in the remainder of this section we53

2Throughout this paper, “conventional lighting systems” refers to LED-based systems that do not have occupancy
and illuminance information and cannot control dimming levels of individual bulbs.
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present only the most-closely related work in that it uses wireless illuminance sensors near work54

surfaces without associating bulbs one-to-one with work areas. The advantage of this design55

choice is that, due to the explicit knowledge of illuminance near the work surface, such systems56

are usually capable of finding optimum—or nearly-optimum—dimming levels, achieving target57

illuminances at all work surfaces. However, as we discuss, prior work makes some assumptions58

that precludes practical deployment.59

2.2. Closely-related work60

Caicedo et al. [4] placed additional wireless light sensors at each work surface to provide61

periodic feedback to bulb-based sensors. However, their system responds to changes in envi-62

ronmental illuminance very slowly (in around 100 seconds) which is sub-optimal. Moreover,63

because light sensors placed on a work surface are subject to occlusion, this method does not64

work as well as a design that places light sensors just above the work surface, as we do.65

Borile et al. [29, 5] proposed a data-driven approach for determining the linear mapping66

between measurement points on the ceiling and points of interest at the work surface. This67

approach requires collecting sensor measurements from both work plane-based and bulb-based68

sensors during the daytime when the office is not occupied. Then, the collected data is used to69

learn the daylight mapping. One practical limitation of the proposed method is that system re-70

calibration is slow, requiring the collection of a new training data set. Also, the proposed method71

does not guarantee good performance under different weather conditions and varying amounts72

of daylight.73

Miki et al. [30] present a distributed lighting control strategy that utilizes infra-red commu-74

nication between neighbouring bulbs. This is not supported by commercially-available bulbs75

today.76

Similar to our work, Wen and Agogino [31] propose an energy-efficient linear optimization-77

based lighting control. However, to generate an illuminance model and determine artificial light78

distribution in the office, the authors use the RADIANCE [32] image rendering program, which79

is based on backward ray tracing. This requires explicit knowledge of several office parameters,80

such as office dimensions, internal surface reflectance, locations and geometries of furniture and81

other objects, as well as bulb parameters and location, precluding practical deployment.82

Yeh et al. [33] and Pan et al. [34] present a system for daylight harvesting, assuming that83

locations of office occupants are known and that they carry wireless light sensors on their mo-84

bile phones. Lighting control strategies based on linear programming and sequential quadratic85

programming algorithms were proposed to satisfy individual illumination requirements of the86

users, based on their activities. Again, this approach suffers from potential occlusion of sensors.87

Moreover, office occupants may not wish to have sensing software installed on their personal88

devices.89

Ravi et al.![35] a surveillance camera infrastructure as the sole sensing substrate to control90

smart lighting power levels. They show that their system can sense per-desk lighting levels91

accurately. However, the deployment of cameras in workplaces has privacy implications that92

preclude widespread deployment.93

In summary, we are not aware of an alternative system that meets our design criteria of power-94

optimality, personalized lighting comfort, robustness to estimation errors, fast response time, and95

plug-and-play deployment. Moreover, only a handful of other systems have been implemented96

in a realistic setting, perhaps due to the complexity in the design, calibration, and installation of97

daylight-linked control systems [9].98
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2.3. Occupant Preferences for Lighting99

Newsham et al. [11] investigated how well various metrics correlate with occupant satisfac-100

tion with office lighting. They observed that illuminance measured on the work surface was the101

best predictor of whether participants were satisfied with their lighting level. Illuminance mea-102

sured at the ceiling was a substantially worse predictor. Recently, luminance-based metrics [36]103

have been proposed as better indicators of lighting comfort than horizontal illuminance. Al-104

though this line of work indicates the drawbacks of horizontal illuminance, we have stayed with105

the simpler metric because there does not appear to be expert consensus on the best luminance-106

based metric.107

In other work, Lashina et al. and Newsham et al. studied occupants in an open-plan office108

laboratory [37, 38, 39] and demonstrated that occupants whose preferred light levels were met109

had significant improvements in mood, productivity, and comfort. Galasiu et al. [40] found that110

user acceptance becomes higher when users are provided with at least partial control of their111

lighting system. They also found that occupants strongly prefer daylight to artificial lighting.112

To sum up, a well-designed office lighting system measures illuminance on (or near) work113

surfaces, allows users to control their lighting conditions, and works synergistically with natural114

lighting. These results inform our design.115

3. System Design116

3.1. Problem Formulation117

Consider an office that has N work stations, such as the one illustrated in Fig. 1. We assume118

that it is lit both by daylight and M controllable LED bulbs, and we only have control over119

the latter.3 The office can be multi-occupancy or single-occupancy with several work stations120

belonging to the same person. In addition, occupants can adjust illumination levels at their121

work stations, allowing personalization. The sensors installed at each work station communicate122

occupancy status and illuminance level to the central controller, which, in turn, determines nearly123

optimal dimming levels for all individual bulbs, and sends them control signals.124

The goal of a smart lighting system is to provide the desired level of illuminance at each of125

the work stations while minimizing energy consumption by fully exploiting the available daylight126

and avoiding any unnecessary over-illumination of work stations. The system should quickly127

respond to changes in daylight levels and occupancy. Finally, it should be plug-and-play and128

self-calibrating so that it can be easily deployed without manual calibration, regardless of the129

geometry and configuration of the room.130

3.2. Mathematical Model131

This section develops a mathematical model of PAR38 Philips Hue LED bulbs [42] used in132

our study. We chose this because it is widely used and provides a software API for dimming133

control. Although our analysis is specific to this choice, a similar approach can be used to model134

any bulb.135

LetA(t) = (Aij(t)) be the illuminance gains matrix, where each of its elementsAij(t) is the
illuminance gain of sensor i from a fully-lit bulb j at time t. Aij(t) is time-dependent because

3Although we are aware of some systems that control daylight level using motorized blinds [41, 7, 8], this paper does
not address this.
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Figure 1: A typical shared office.

it can be affected by objects or people between sensor i and bulb j, slight accidental movements
of sensors or bulbs as well as changes in the bulbs’ temperatures [43]. Let dj ∈ [0, 1.0] be a
dimming level of the jth bulb: if Lij(dj , t) is the illuminance gain of sensor i from a bulb j
whose dimming level is dj at time t, then

dj(t) =
Lij(dj , t)

Lij(1.0, t)
=
Lij(dj , t)

Aij(t)
(1)

The Philips Hue API [44] does not allow us to control dimming levels directly. Instead, it136

only allows turning a bulb j on and off, as well as setting its brightness control value bj to an137

integer between 0 and 255. We determined the mapping from bj to dj empirically, as shown in138

Fig. 2. An analytic relationship was determined by fitting a curve to the experimental data points139

as:140

dj(bj) =

{
2.55 · 10−5 · b1.90j + 0.047 if j is on and 0 ≤ b ≤ 255
0 if bulb j is off

(2)

Note that when the brightness control value is 0, a bulb’s dimming level is 0.047 (4.7%). The141

dimming level becomes 0 only when a bulb is completely turned off.142

Power consumption model: We experimentally studied the relationship between dimming143

level and power for a PAR38 Philips Hue bulb. It is nearly linear when the bulb is on, but with a144

clear discontinuity when the bulb is off (see the blue dashed line in Fig. 3). This is because the145

bulb has a standby power draw of 1.18 W due to its use of the Zigbee communication protocol.146

The power vs. dimming relationship can be represented using the best fit line 9.97dj + 2.47 as:147

Pj(dj) =

{
1.18 if dj = 0.0
9.97dj + 2.47 if 0.0 < dj ≤ 1.0

(3)
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Figure 2: Empirically obtained relationship between dimming level dj and brightness control value bj of a PAR38
Philips Hue bulb, and the corresponding best-fit curve.

Figure 3: Empirically obtained relationship between power Pj(bj) and dimming level dj(bj) of a PAR38 Philips Hue
bulb. Each experimental data point is labeled with a corresponding Philips Hue brightness control value bj .
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Unfortunately, in the power optimization step, which is discussed in Section 4, the discon-148

tinuity at zero would result in a mixed-integer optimization program, which is computationally149

expensive to solve. Hence, we relax this relationship to :150

Pj(dj) = 11.83dj + 1.18 (4)

represented by the solid green line in Fig. 3. Note that the effect of this linearization is slight over-151

estimation (up to 0.75W ) of power consumption for high dimming levels, and under-estimation152

(up to 1.25 W ) at lower dimming levels.153

The electrical power consumption of LED bulbs depends slightly on their temperature [43].154

We find, for example, that after 1 hour of operation, the bulbs consume about 3% less power to155

provide the same illuminance. For simplicity, we use a steady-state estimate of the power vs.156

dimming level relationship to model the bulbs. This can introduce an error of up to about 3% in157

our results.158

3.3. Determining the Illuminance Gains Matrix159

We now discuss how to determine the illuminance gains matrix A(t), whose elements Aij(t)160

represent the illuminance from bulb j on sensor i at time t. Throughout this paper, we refer to161

the process of determining matrix A(t) as the calibration process. To begin with, let Ri(~d, t)162

be the illuminance at sensor i at time t when the bulb dimming levels are represented by the163

dimming vector ~d = [d1, ..., dM ], where M is the total number of bulbs. From the additivity of164

light [15, 3]:165

Ri(~d, t) = Ei(t) +

M∑
j=1

Lij(dj , t) = Ei(t) +

M∑
j=1

djAij(t) (5)

where Ei(t) is the time-dependent illuminance gain of sensor i from the environment, which166

comprises of daylight and other environmental light sources out of our control.167

One straightforward way to obtain A(t) is to first measure environmental illuminance gains168

by reading sensors while all bulbs are off. Next, we could sequentially turn on one bulb at a time,169

record new illuminance readings, and subtract respective environmental illuminance gains from170

these readings. Even though this calibration process allows us to estimate the matrix A(t), it is171

obtrusive, and thus cannot be performed when the system is in use. However, re-calibration is172

necessary whenever a significant change in the illuminance gains matrix occurs, such as when173

furniture is moved.4 To address this, we developed an unobtrusive calibration method, based on174

the observation that, while a human eye is insensitive to minor lighting changes [11], photosen-175

sors are capable of detecting them accurately.176

Suppose that, just before calibration, the dimming vector is ~d. Let ~̂d(j) be a dimming vector177

with all the entries equal to ~d except:178

d̂
(j)
j =

{
dj + S if dj < B
dj − S if dj ≥ B

(6)

4Re-calibration is not necessary if the illuminance gains matrix does not change significantly because the feedback
control algorithm described in Section 4.2 ensures that comfort is maintained despite smaller errors in the matrix. In
particular, re-calibration is not needed if there is a change in daylighting level.
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where, in our experiment, we use a dimming step S = 0.1 and the pivot point B = 0.65.179

We first record illuminance readings Ri(~d, t). Immediately after, sequentially for every bulb180

j we change the dimming level of bulb j to d̂(j)j , record illuminance readings Ri(
~̂
d(j), t′) for all181

sensors i, and then restore the brightness of the bulb to its original value dj , and proceed to the182

next bulb. We ensure that t and t′ are at most a few seconds apart, and we assume that neither183

daylight nor the illuminance gains matrix change much on such a timescale. Hence, considering184

that Aij(t) ≈ Aij(t
′) and Ei(t) ≈ Ei(t

′) and using Eq. 5 we get185

Aij(t) =
|Ri(~d

(j), t′)−Ri(~d, t)|
S

(7)

for all sensors i and bulbs j. Note that this calibration procedure allows estimating the illu-186

minance gains matrix without requiring explicit knowledge of office geometry and locations of187

bulbs and photosensors, thereby contributing to the system’s plug-and-play design.188

In our prototype implementation (Section 6), in an office with 8 bulbs, this calibration process189

takes about 10s. Depending on the number of bulbs and the nature of the environment, we suggest190

that a re-calibration period of 10min-1hr.191

3.4. Estimating Environmental Illuminance E192

Because we obtain columns of the illuminance gains matrix one after another in quick suc-193

cession, we assume that its values, as well as environmental illuminance gains, do not change194

drastically during this procedure. Thus, knowing total illuminance values Ri(~d, t) on all sensors195

i, dimming level settings dj on all bulbs j, and illuminance gains Aij(t), we can estimate the196

environmental illuminance gains Ei(t) from Eq. 5 as:197

~E(t) = ~R(~d, t)−A(t)~d (8)

3.5. Estimation Error for A and E198

Aij(t) is a time-varying ground-truth illuminance contribution on sensor i from bulb j. How-199

ever, the proposed calibration process gives us only an empirical estimate of a snapshot of matrix200

A at the calibration time, which we denote as Ã ∈ RN×M . Ã is not a function of time and is201

subject to estimation errors.202

Let ε(t) ∈ RN×M be the time-dependent estimation error that captures both calibration203

errors, caused by imperfect sensor measurements and environmental fluctuations, and estimation204

errors, caused by the time-varying nature of A(t). It is given by:205

ε(t) = Ã−A(t) (9)

Note that Eq. 8 uses the true matrix A(t) to estimate the environmental illuminance contri-206

bution on sensors. However, in practice, only the estimated matrix Ã is available through the207

calibration process. By combining Eq.’s 8 and 9, we get208

~R(~d, t) = ~E(t) + (Ã− ε(t))~d (10)

Since the error term ε(t) in Eq.10 is unknown, the environmental contribution ~E(t) cannot209

be calculated directly. We can only estimate it as:210

~̃
E(t) = ~E(t)− ε(t)~d = ~R(~d, t)− Ã~d (11)
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where ~̃
E(t) is an estimate of the environmental illumination at time t, and −ε(t)~d is the211

associated estimation error in the environmental illumination. The effect of the estimation error212

on the system performance is further discussed in Sections 4.2 and 6.5.213

4. Optimal and Adaptive Control214

4.1. Optimization Program215

Let the target illuminance on sensor i be hi, where this target can be appropriately set accord-216

ing to user preferences and occupancy status of the corresponding workspace. We assume that217

the installed light capacity is such that, with the maximum power level at all bulbs, this target can218

be met; otherwise the program is trivially infeasible. The goal of the system is to minimize the219

total power consumed by M bulbs while providing (at least) the target illuminance levels at N220

work stations. Recall that the (relaxed) relationship between power and dimming level is linear221

(Eq. 4). Therefore, the optimization program reduces to minimizing the sum of dimming levels222

subject to illumination requirements.223

Let D =
∑M

j=1 dj denote the sum of the components of the dimming vector. Then, the224

optimization program is:225

minimize
~d

D

subject to ~E(t) +A(t)~d ≥ ~h
~0 ≤ ~d ≤ ~1

(12)

To solve this linear program, the knowledge ofA(t) and ~E(t) is required. If we knew the real226

A(t) and ~E(t) at every moment t, optimal dimming levels could be chosen at each optimization227

step. However, in reality, we can only estimate A(t) and ~E(t), and these estimates are prone to228

error. Hence, to design a practical system, we re-express the optimization program in terms of Ã,229

obtained from the calibration process and defined in Eq. 9, and the environmental illumination230

estimate ~̃E(t), defined in Eq. 11. We then use an iterative process, discussed next, to achieve the231

control objective despite estimation errors.232

Let index k denote a variable’s value at the moment of iteration k. The optimization program233

can then be written as234

minimize
~dk

Dk

subject to ~̃
Ek + Ã~dk ≥ ~h
~0 ≤ ~dk ≤ ~1

(13)

This linear program cannot be solved directly because the environmental illumination esti-235

mate ~̃Ek is unknown before iteration k. Recall from Eq. 11 that236

~̃
Ek = ~Ek − εk ~dk = ~Rk − Ã~dk (14)

Both terms on the right-hand side of Eq. 14 are unavailable to the optimizer since ~dk is the237

unknown variable that we want to optimize and ~Rk can be measured only after dimming levels238
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~dk have been set on bulbs. We approximate the environmental illumination estimate ~̃
Ek by239

~̃
Ek−1 = ~Rk−1 − Ã~dk−1, which can be readily calculated. Then we can rewrite the program 13240

as241

minimize
~dk

Dk

subject to Ã · (~dk − ~dk−1) + ~Rk−1 ≥ ~h
~0 ≤ ~dk ≤ ~1

(15)

Now, all of the terms, except for the unknown dimming vector ~dk, are readily available.242

4.2. Adaptive Control243

Figure 4: Control diagram for the smart lighting control.

In order to compute the optimal dimming levels in iteration k, our optimization program244

given in (15) uses the results of the previous iteration k − 1. This feedback loop forces the245

illuminance on the light sensors to converge to target set points, making the system robust to the246

model imperfections. Fig. 4 shows the corresponding control diagram. At each iteration k the247

controller repeatedly executes the following steps:248

1. Using target illumination ~h, the previous iteration’s dimming vector ~dk−1 and illuminance249

readings ~Rk−1, find ~dk by solving the optimization program given in (15).250

2. Set the computed dimming levels ~dk on bulbs, and wait until the bulbs fully adapt to the251

new dimming levels.252

3. Measure new illuminance ~Rk on the light sensors.253

We now analyze the convergence of this approach. For simplicity, assume that the environ-254

mental illuminance gains and the estimation error matrix do not change significantly between255

two iterations of the control algorithm, i.e., εk = εk−1 = ε and ~Ek = ~Ek−1 = ~E. In addition,256

assume that the solution to the optimization program (15) satisfies the illuminance constraints257

with equality, so that when in iteration k the controller computes the dimming vector ~dk, we get258
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Ã · (~dk − ~dk−1) + ~Rk−1 = ~h

or, considering Eq. 14,259

Ã~dk − ε~dk−1 + ~E = ~h (16)

Then, after the bulbs fully adapt to the new dimming levels ~dk, sensors read new illuminance260

measurements ~Rk:261

Ak
~dk + ~E = ~Rk

where Ak is a true theoretical illuminance gains matrix. We can express Ak in terms of the262

empirically obtained matrix Ã using Eq. 9:263

Ã~dk − ε~dk + ~E = ~Rk (17)

Similarly to Eq. 16, in the next iteration:264

Ã~dk+1 − ε~dk + ~E = ~h (18)

By subtracting Eq. 17 from Eq. 16 we get:265

ε(~dk − ~dk−1) = ~h− ~Rk (19)

On the other hand, subtracting Eq. 17 from Eq. 18 gives266

Ã(~dk+1 − ~dk) = ~h− ~Rk (20)

Note that, since Eq.s 19 and 20 have the same right-hand side, they can be combined as:267

Ã(~dk+1 − ~dk) = ε(~dk − ~dk−1) (21)

By introducing ∆~dk = ~dk − ~dk−1, we rewrite Eq. 21 as:268

Ã∆~dk+1 = ε∆~dk (22)

and, therefore269

∆~dk+1 = Ã−1ε∆~dk (23)

where Ã−1 denotes the pseudo-inverse. Eq. 23 indicates the convergence condition of the control270

system. That is, whether the system converges depends on the product of matrices Ã−1 and ε.271

Intuitively, if the elements of the error matrix ε are smaller than the elements of the illuminance272

gains matrix Ã, then the system converges. We evaluate the convergence of the system for various273

levels of estimation error in Section 6.5274

Adaptation to changes in ~E and ~h: Note that changes in environmental illumination ~E275

(e.g., daylight) are handled directly by the control loop in the following control epoch. After ~E276

changes, sensor readings ~Rk start to deviate from the target ~h, and the optimizer computes new277

dimming levels to restore the target illuminance on the sensors. On the other hand, we designed278

the system to handle changes in target illuminance ~h (e.g., occupancy or users’ illuminance279

preferences) differently for time-efficiency reasons. When ~h changes, we immediately terminate280

the ongoing control iteration and start the next one with the updated vector ~h.281
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5. Implementation282

As a proof-of-concept, we have implemented a prototype of the proposed smart lighting283

system. It consists of three principal components: stand-alone wireless sensing modules that284

measure occupancy and illuminance of each work station, dimmable LED bulbs, and a central285

controller that receives sensor inputs and sends control signals to each bulb. A high-level diagram286

of the system is shown in Fig. 5. For reasons of space, the details are elided; a full description287

can be found in the extended version of this paper [45].288

Figure 5: High-level diagram of the smart lighting system.

6. System Performance289

This section investigates the performance of the smart lighting system, and in particular,290

how quickly and accurately it converges to the target illuminance levels. A short video that291

demonstrates the system can be found at https://youtu.be/G8RIXDEUX20.292

6.1. Evaluation Testbed293

We installed a 2.45 m. high ceiling above four desks in a secluded 3.0 × 3.8 m. work area294

(Fig. 6). The space is illuminated by eight dimmable 1300 lumen-rated LED bulbs evenly in-295

stalled in the ceiling, that wirelessly communicate with a central control module. Each desk296

has a wireless sensing module deployed on the edge of its shelf, which periodically sends oc-297

cupancy status and illuminance level to the control module via a local wireless network. Also,298

each occupant can express individual illuminance preference at their desk through that desk’s299
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sensing module. Users’ illuminance preference, along with sensor readings, serve as inputs to300

the controller which implements our control algorithm described in Section 4.2.301

Unfortunately, our testbed is based in an internal room that does not have a window. There-302

fore, it is not possible to carry out daylight harvesting. Instead, we emulate daylight by switching303

the laboratory’s central light on and off. In other experiments, not described here, we also used304

an intense work lamp to simulate daylight to some extent. We realize that this does not capture305

fast time-scale variations in daylight. Nevertheless, please note that in the mathematical system306

model, the external artificial light and daylight are equivalent, and both of them are modeled as307

environmental illuminance gains ~E(t). Thus, switching the artificial lighting on and off is similar308

to quickly opening and closing blinds or the sun passing behind or emerging from a cloud.309

System calibration: By using our automated calibration process, the following illuminance310

gains matrix Ã ∈ R4×8 is obtained for our evaluation testbed with 4 light sensors and 8 bulbs:311

b0 b1 b2 b3 b4 b5 b6 b7312
s0 176.19 5.46 13.66 329.15 2.73 6.83 25.95 13.66313
s1 5.40 195.84 12.16 1.35 430.85 21.61 4.05 9.45314
s2 198.54 2.70 6.75 14.86 4.05 5.40 301.19 17.56315
s3 5.87 199.69 5.87 2.94 13.21 431.68 5.87 19.09316

Note that the illuminance gains on all sensors from bulbs b2 and b7 are relatively small, due317

to these bulbs being located further away from the sensing modules. If they are removed from318

the system, the resulting illuminance gains matrix is 4× 6 and achieves a maximum achievable319

illuminance (i.e., row sum) of:320

s0 s1 s2 s3321
546.31 659.11 526.75 659.27322

This shows that six 1300 lumen-rated bulbs are sufficient to illuminate the office space (de-323

livering at least 500 lux to all work stations), even when no environmental lighting is available.324

Therefore, in the evaluation of the reduction in energy consumption, presented in Section 6.6,325

we consider systems with six bulbs.326

6.2. Changes in Environmental Illuminance327

To evaluate the smart lighting system’s responsiveness to changes in environmental illumi-328

nance, we set the system to maintain heterogeneous illuminance levels, namely, 300, 350, 450329

and 500 lux, on the four sensing modules. Then, by turning on and off the laboratory’s central330

lighting, we simulate the opening and closing of blinds. On Fig. 7, white and yellow regions cor-331

respond to the laboratory’s main light being off and on, respectively. The top time series show332

the illuminance signals on the four sensing modules. The bottom time series show dimming lev-333

els on the bulbs with small filled circles corresponding to moments when the dimming levels are334

set.5335

Abrupt spikes on the illuminance time series correspond to abrupt changes in environmental336

illuminance, i.e., turning on or turning off the laboratory’s central light. We see that it takes the337

system about 2-4 seconds to fully adapt to the environmental changes and restore illuminance338

levels on all sensors. Recall that the control of bulbs’ dimming levels is done via the iterative339

control algorithm from Section 4.2. Therefore, the system’s timescales can be expressed in terms340

of the number of iterations. Based on our empirical measurements, the maximum time of one341

iteration is ∼1.65s. The bulk of this time is due to the need for the LED bulbs to fully adapt to342

5Bulbs b2 and b7 were off throughout the experiment, so are not shown in this and subsequent figures.
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Figure 6: Testbed implementation of the smart lighting system.
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the new dimming level. Our measurements indicate that this typically requires less than 700ms,343

but, for additional robustness, we allocate 1.3s for this adaption. The linear program solver and344

network calls take most of the remaining 350ms.345

From the dimming level time series (the bottom graph in Fig. 7) we see that the time it takes346

to set new dimming levels on bulbs after the environmental change occurs is within ∼2 seconds347

of the change in external lighting, and that only 1 iteration is required for the system to fully348

converge if we have an accurate estimated matrix Ã. If the matrix Ã is poorly estimated, it349

would take more iterations for the system to converge, as discussed in Section 6.5.350

It is worth noting that while this experiment considers significant abrupt changes in envi-351

ronmental illuminance, natural changes in daylight are much smoother and subtler. When the352

environmental lighting changes per iteration are lower than typical eye sensitivity, we found that353

the system adapts to these changes imperceptibly.354

Figure 7: Response to changes in environmental illuminance. b0 overlaps with b5.

6.3. Changes in Illuminance Preference355

To evaluate the system’s responsiveness to changes in users’ illuminance preferences, we356

require the system to maintain constant illuminance levels of 300, 350 and 500 lux on three of357

the desks, while on the fourth desk a new illuminance preference is set every 10-15 seconds by358

its occupant.359

The results of this experiment are shown in Fig. 8. On the top plot, solid lines correspond to360

sensor readings, while the dashed line corresponds to the user’s illuminance preference that has361

been changed several times throughout the experiment. The bottom plot shows dimming levels362

on the bulbs.363

Note that the biggest changes in dimming levels are for bulbs that most affect a sensor, e.g.,364

bulbs 1 and 4 for sensor 1. By comparing the top time series to the bottom ones, one can see365
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Figure 8: Response to changes in target illuminance. b0 partially overlaps with b5.

that the target illuminance changes are followed by the system’s reaction almost immediately,366

within a fraction of a second. Recall from Section 4.2 that when a change in target illuminance367

is registered, the system immediately terminates the ongoing iteration of the control loop and368

restarts the optimizer with the new target illuminance settings. This results in a fast reaction time369

to change of about 350ms. After dimming levels are set, it takes the bulbs at most 1.3s. to fully370

adapt to these new dimming settings. Thus, provided that we have an accurately estimated matrix371

Ã (i.e., it takes 1 iteration for the system to converge), the maximum total time to adapt to the372

new target illuminance is about 1.65s.373

6.4. Changes in Occupancy374

We next test the system’s response to sequential changes in occupancy of all 4 work stations.375

We simulate a scenario where users come to their work station one by one, stay for 50-60 seconds,376

and then leave. The target illuminance on occupied desks is set according to user preferences,377

which are chosen to be 300, 350, 450 and 500 lux. On the other hand, the target illuminance of378

unoccupied desks is 0 lux, as we assume that an unoccupied desk does not have to be illuminated.379

The results of a typical experiment are shown in Fig. 9. The top four plots show real and380

target illuminances on the four light sensors, indicated by solid and dashed lines, respectively.381

The bottom plot shows the dynamically changing dimming levels of the bulbs. We find that the382

system succeeds at illuminating the occupied work stations according to the users’ preferences,383

while almost not illuminating the unoccupied ones. By examining the experimental data, we384

find that the system reacts to changes in occupancy within 350ms, and fully adapts to them in385

∼1.65s.6386

6Responsiveness to changes in occupancy and users’ preferences is expected to be the same since both of them are
16



Figure 9: Response to changes in occupancy.
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Note that sometimes it is impossible to achieve the exact target illuminance on a sensor due387

to physical limitations. For instance, in Fig. 9, the illuminance levels at unoccupied desks are388

sometimes higher than the target value of 0 lux. The unoccupied desk gets some unintended389

illumination, when a neighbouring desk’s target illuminance value is high. However, the control390

algorithm always tries to minimize any over-illumination, due to the optimization program’s391

objective function that minimizes overall power consumption.392

6.5. Effect of Error in Matrix A on Performance393

In practice, an estimated illuminance gains matrix Ã is subject to error due to several fac-394

tors including inaccurate calibration, accident sensor movements, and decrease in bulbs’ lumi-395

nous flux with temperature. Recall that Eq. 23 shows the theoretical effect of this error on the396

convergence of the control algorithm. This section empirically investigates the performance of397

the system when the estimated illuminance gains matrix Ã has various degrees of inaccuracy.398

Specifically, we artificially introduce errors in the Ã matrix by partially covering sensors during399

the calibration phase so that they under-report the true illuminance7. The system then tries to400

maintain constant heterogeneous illuminance levels on the four light sensors, namely, 175 lux,401

200 lux, 225 lux and 250 lux, despite changes in the environment due to the laboratory’s central402

lighting being turned on and off.403

Typical results of these experiments are shown in Fig. 10. White and yellow regions corre-404

spond to the laboratory’s main light being off and on, respectively, causing a sharp change in the405

environment. We show the illuminance at the four sensing modules with a 0%, 30%, and 60%406

average error in the illuminance gains matrix Ã. Note that the system rapidly converges even407

with 30% error. However, the system does not converge when Ã ≈ ε(t), for example, when the408

mean error is 60%.409

6.6. Reduction in Energy Consumption410

Lighting power consumption is a function of bulbs’ dimming levels (plus the power re-411

quired by sensors/microcomputers). Given a particular work station configuration and a desired412

workspace illumination, these dimming levels depend on the occupancy of work stations and the413

level of available daylight. To evaluate the energy saving potential of our work, we built a custom414

simulator that estimated the energy cost of lighting using different technology options. We first415

describe how we chose the work station configuration and lighting levels, then discuss how the416

occupancy and daylight availability were modeled.417

The simulated work station configuration is the testbed described in Section 6 with six 1300-418

lumen bulbs. The simulations approximate the time-varying illuminance gains matrix A(t) by419

the constant estimate Ã ∈ R4×6. Two target illuminance requirements were chosen: at least 450420

lux for occupied work stations, and 0 lux for unoccupied work stations. With these assumptions,421

the only information required by the simulator to compute time-varying optimal dimming levels422

(and the corresponding power consumption) are occupancy and daylight signals (~o(t) ∈ R4×1
423

and ~E(t) ∈ R4×1, respectively) from each sensing module. We obtained these from 7 months of424

measured illuminance and occupancy data, as discussed next.425

expressed by the changes in target illuminance.
7Note that sensors are occluded only during the calibration phase. During the operation phase, they are uncovered

(which causes the estimation error in matrix Ã).
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Figure 10: Impact of 0%, 30%, and 60% mean estimation error on convergence.
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Recall that our experimental testbed has no windows. Therefore, the daylight illuminance426

data was collected from three other unoccupied offices, each with a large window, during the427

7-month period from October 1, 2018, to May 1, 2019, in Waterloo, ON, Canada. Each of the428

offices was instrumented with two custom-built sensing modules, based on the Onion Omega mi-429

crocontroller [46] augmented with a TSL 2561 light sensor, installed in two different locations.430

These sensing modules logged illuminance measurements every minute. Details on design, cal-431

ibration, and management of this auxiliary sensing system can be found in the extended version432

of this paper [45].433

Occupancy data used in the simulation was collected in the same building in the SPOT434

project [47]. The dataset contains 7-month long occupancy signals collected from 20 distinct435

work stations that belong to graduate students, faculty members or administrative staff, down-436

sampled to 1 minute.437

We collected two illuminance signals in each office, but there are four work stations in the438

testbed, so we added a zero-mean, σnoise = 0.05µsignal Gaussian noise to each daylight signal439

to mimic the daylight illuminance on two sensing modules from neighbouring work stations.440

The illuminance and occupancy signals are then randomly combined, resulting in 7-month long441

combined (t, ~E(t), ~o(t)) 1-minutely signals, as shown in Fig. 11.442

Figure 11: Example of daylight and occupancy signals.

We estimate the amount of energy consumed by bulbs in each 1-minute interval by com-443

puting the optimal dimming level vector ~d(t) and compare this to several other lighting system444

configurations, as described next. For existing systems based on incandescent8 or fluorescent445

bulbs, we study two variants, one that is always on9 (labelled INC basic and CFL basic), and446

one that turns on all bulbs if any work station is occupied (INC occup-ol and CFL occup-ol). For447

LED systems, we study four variants: with neither daylight harvesting nor occupancy awareness,448

i.e., simply replacing existing bulbs with LED bulbs (LED basic), with only daylight harvesting449

but not occupancy awareness (LED-daylight), with only office-level occupancy sensing but no450

daylight harvesting (LED-occup-ol) and with both daylight harvesting and per-desk occupancy451

sensing (LED-daylight-occup-dl). For a fair comparison, all systems use six 1300 lumen-rated452

8Although these have been phased out in much of the world, we present this data as a point of reference.
9For all occupancy-unaware systems, we assume the light is turned on by the first person to arrive and turned off by

the last to leave.
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bulbs which consume 13W for LED, 27W for CFL [48] and 85W for incandescent bulbs [49],453

respectively. In addition, note that systems with an occupancy detection and/or daylight harvest-454

ing consume 6.2W for sensing, computing and communicating or 0.1488kW h/day.455

We conduct 90 simulations for each configuration using randomly combined daylight and456

occupancy traces. Fig. 12 shows the average daily energy consumption of different lighting sys-457

tems, with 95% error bars. As expected, incandescent bulbs consume roughly 3 times more458

energy than the systems using CFL bulbs which, in turn, consume 2-3 times more energy than459

LED-based lighting systems. Office-level occupancy detection decreases the average daily en-460

ergy consumption of the incandescent bulb-based and CFL-based systems by 15% and 8.5%,461

respectively.462

Figure 12: Daily energy consumption of different lighting system configurations.

Comparing the four LED-based systems, the average daily energy consumption of systems463

with either daylight harvesting or office-level occupancy detection alone is not significantly dif-464

ferent from that of a basic LED lighting system (0.78 kWh vs. 0.87 kWh vs. 0.85 kWh,465

respectively). However, an LED lighting system that has both daylight harvesting and per-desk466

occupancy detection on average consumes 40% less thank the basic LED system (and about 3x467

less than the basic CFL system and 9x less than the basic incandescent system). Of course,468

the actual level of savings depend greatly on the degree of occupancy and the level of daylight469

available in the work stations. Interestingly, an LED lighting system with the office-level occu-470

pancy detection capability on average consumes slightly more energy than the basic one. This471

is because occupancy sensing requires an additional constant power of 6.2 W for the controller472

and wireless sensors, more than offsetting the reduction in bulb power consumption. Clearly,473

with very low occupancy, the standby losses would make smart lighting systems that do not have474
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per-desk occupancy sensing cost ineffective. However, we are not able, at the present time, to475

specify the occupancy level at which this crossover would take place. In any case, note that our476

system, with the use of per-desk occupancy sensors, is cost-effective with the occupancy levels477

measured in our dataset. In work not presented here, we studied using wireline control and found478

that this, as expected, reduces the power cost, though at the expense of deployment complexity.479

7. Conclusions480

We present a power-efficient smart lighting control system that, in a realistic evaluation, re-481

duces energy consumption by about 40% compared to a conventional system and is able to main-482

tain heterogeneous illumination in the office, while quickly responding to dynamically changing483

illuminance preferences of the occupants. It is robust to errors and quickly adapts to changes484

in environmental illuminance and occupancy. System deployment is plug-and-play. Moreover,485

although we have not elaborated on this in the paper, new system components, such as addi-486

tional bulbs and sensing modules, can be seamlessly connected and disconnected, even while the487

system is in use.488

Our work has four limitations. First, we made some simplifying approximations, such as not489

modeling the effect of temperature on the bulbs’ power consumption, and linearizing the power490

model. These can potentially cause small errors (up to 3%) in a bulb’s power consumption491

estimates. Other errors, such as due to daylight fluctuations and sensor miscalibration, are likely492

to be larger sources of error in practice. Second, our system measures illuminance near work493

surfaces and not directly on them. However, in practice, this is likely not an issue because494

users can readjust the desired illuminance levels to compensate for sensor placement errors.495

Third, our analysis and implementation focuses on the Philips Hue bulbs, although our methods496

and software could be generalized to work with other software-controllable bulbs. Finally, we497

conducted our experimental evaluation in the laboratory setting without an external window.498

Hence, we were unable to accurately reproduce fluctuations in daylight. We note that our system499

is open source and we will also make our data traces publicly available.500

In future work, in addition to controlling bulbs, we plan to consider controlling blinds to limit501

the daylight that enters the room, allowing us to optimize both the lower and the upper bound502

on the illuminance of the sensors. We would also like to implement a graphical user interface to503

intuitively set illuminance preferences.504
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