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ABSTRACT

Today’s solar and storage systems are typically sized at the time of
deployment to match historical loads. However, loads do change
over time, which may make one-shot sizing sub-optimal. Modular
storage systems allow storage capacity to change over time to
better match changing loads. We investigate how a modular battery
system, in combination with a solar photovoltaic (PV) in a grid-
connected system, can be dynamically resized to reduce overall
costs. We develop an algorithm for dynamic resizing and evaluate
it in multiple scenarios using both real and synthetic traces of solar
and load. We find that our algorithm is able to closely approximate
the offline optimal algorithm. Moreover, in our case study, we find
that overall costs are not significantly reduced due to resizing of
storage, and this conclusion is insensitive to types of load changes
and the choice of resizing interval.
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1 INTRODUCTION

Rapidly declining prices of PV systems and storage have made them
increasingly popular, even in residential settings. By adding storage
(also called battery in the remainder of this paper), PV systems can
supply energy on cloudy days or at night, allowing home-owners
to reduce their dependence on the electrical grid. However, due to
substantial capital costs for PVs and batteries, their sizes need to
be chosen carefully.

Typically, PV and storage are sized at the time of installation
based on historical traces of load and solar generation [6]. If the
load deviates from its historical patterns, for example due to the
purchase of an electric vehicle (EV), the addition or removal of a
pool pump, or the addition or departure of a family member, this
sizing may be incorrect. Unfortunately, residential PVs are usually
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roof-mounted and cannot be easily accessed to allow a change in
its size. In contrast, a modular battery system, which consists of a
set of bays into which storage modules can be self-installed by the
owner, much like a hard drive, is easy to reconfigure [3]. Such a
system gives the owner the opportunity to dynamically change its
size to reflect changes in load patterns.

It seems intuitively obvious that dynamically changing the bat-
tery size to match the load would prevent oversizing or undersizing
at the time of initial deployment, reducing overall costs. To validate
the correctness of this insight, this paper investigates how a mod-
ular storage system’s size can be dynamically adapted to changes
in the load or generated electricity to minimize total costs, which
are the sum of PV costs, battery costs, and unmet energy costs. We
propose a stochastic model-predictive control (MPC) approach to
the resizing algorithm that reduces total costs, and evaluate how
well this algorithm performs. We also study how often resizing
should take place to balance between cost minimization and re-
sponsiveness to changes in load.

Note that we assume that the PV system is grid-connected, so
that load not met from this system is purchased from the grid. For
simplicity, we assume that this price is constant and not subject to
time-of-use pricing; we also assume that the grid does not pay for
an power transferred to it. Our approach could be adapted to model
more complex scenarios with appropriate parameter changes. Note
also that the PV size is difficult to change, so in this work it is
regarded as fixed, and the cost of PV is modeled as a sunk cost.
Finally, we size the storage only for energy, not for power, since a
typical 10 kWh residential store can provide nearly 100A at 110A,
which meets most domestic power requirements.

We make three key contributions:

e We present an algorithm based on model-predictive control
to periodically resize the storage system.

e We show that our algorithm (slightly) reduces total costs
compared to a static sizing and that its performance is very
close to that of an offline optimal algorithm.

e However, contrary to our expectations, in our case study, the
reduction in costs from resizing is not significant. Moreover,
this conclusion is robust to changes in load type and resizing
interval.

The organization of the rest of the paper is as follows. Section
2 provides an overview of related research, before section 3 intro-
duces the approach taken to resize the battery. Section 4 evaluates
this approach and answers questions like whether or not dynamic
resizing can reduce the total costs of a PV/battery system and how
often the resizing should take place. Finally, section 5 concludes
this paper.
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2 RELATED WORK

This section outlines related work on PV and storage sizing as well
as work on synthetic trace generation.

Sizing solar and storage systems is an important practical prob-
lem that has been well studied in the literature, as recently surveyed
in Reference [5]. Therefore, in the interests of space, we focus here
only on the most closely related work.

Kazhamiaka et al [6] present and evaluate three different robust
sizing approaches: mathematical programming, simulation, and
an analytical method based on the stochastic network calculus.
Load and solar traces are used to express a residence’s electricity
demand and solar activity that can be used for electricity generation,
respectively. Their goal is to minimize the costs of the PV and
battery while guaranteeing a specified Quality of Service (QoS),
which is either measured as loss of load probability or expected
unserved energy for a specified period.

The present work differs from this work in three aspects. First,
we allow storage to be resized. Specifically, the PV size is assumed
to be fixed and we explore how costs might be reduced by storage
owners periodically self-resizing their storage.

Second, their goal of minimizing PV and battery costs that guar-
antee a certain QoS makes sense in an off-grid situation. We assume
that the residence is grid-connected, so the cost minimization is not
subject to a QoS constraint. Instead we explicitly model the costs of
unserved energy, i.e., additional electricity costs with a fixed-cost
tariff. Thus, the overall costs are minimized by choosing a sensible
trade-off between higher investments into the battery and a higher
level of unserved energy.

Finally, Kazhamiaka et al use a Chebyshev bound to compute
robust sizings of PV and storage. They need to do so because of
the considerable degree of uncertainty in future loads. In our work,
because we allow resizing, each resizing choice itself need not be
overly conservative, allowing us to (mostly) dispense with the use
of this bound (the exception is that we use the bound for the initial
sizing, as discussed in more detail below).

The second strand of related work is concerned with synthetic
trace generation. As historical data that can be used for the sizing of
a system is often rare, synthetic traces can be used to generate more
traces from the same distribution. Sun et al [8] evaluate how well
data generated by different generative models can be used to find a
sizing that meets a predefined QoS for a PV/storage system. The
goal is to make the system robust to future variations in generation
or load, which are unknown when the sizing decision is made.
The ARMA model was found to be the most effective. Given the
uncertainty of future traces, an ARMA model can also be used in a
dynamic resizing approach to model what future traces might look
like, to make the sizing to a certain extend robust to this uncertainty.
We discuss this in more detail later in this paper.

3 DYNAMIC RESIZING APPROACH

As discussed, prior work demonstrates how to size storage and
PV given historical traces of solar generation and load [6]. We use
this approach to compute the initial PV size, using the simulation
approach discussed there and one year of prior load and solar data,
which is assumed to exist. We then periodically re-calculate the
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cost-minimizing battery size. This section describes how the cost-
minimizing battery size is computed.

Our approach mimics the control procedures used in stochastic
Model Predictive Control [4]. Specifically, we periodically minimize
the total cost:

argmin cpq; + E(cye) (1)
B

where B represents the size of the storage, the battery cost is cpq;,
and the expected cost of unserved energy, which must be obtained
from the grid, is E(cye). Both costs are evaluated from the time of
resizing to the end of the lifetime of the battery!, as discussed in
more detail below. While the battery costs are certain, the expected
unserved energy depends on the future behaviour of solar and load
and is therefore uncertain.

We now modify Equation 1 to better model resizing costs. Specif-
ically, it will be convenient to compute the cost of a change in
battery size, denoted AB, rather than the battery size itself. Also,
we include the labour cost of changing the battery size by AB, de-
noted cins: (AB) (this cost is expected to realatively low because
the installation would be by the owner of the storage).

We thus calculate the cost-minimizing change in battery size
AB* at time t in days from the start of the system deployment as:

AB*(t) = argmin cpg; (t, AB) + Cinst (AB) + E(cye(t, AB))  (2)
AB

The term t in this equation emphasizes that the time span over
which the costs are calculated is from the time of resizing ¢ to the
end of the lifetime of the initial battery. The lifetime of the initial
battery in days is denoted as T.

We make the simplifying assumption that modules added to
the storage system have the same lifetime as the remainder of the
system?. We also assume linear depreciation in module price. The
battery costs can then be computed with either a buying or a selling
price for modules, depending on the sign of AB:

buy _ _buy T—t >
cbat(t’AB):{ ng 2(t) * AB=mp 7 # =7 % AB, forAB_O}

B
ﬂge”(t) * AB = nge” * % x AB, for AB <0
where n]l;uy is the price for a battery module with lifetime T, and

b —t . . . ..
thus ”Buy * % is the price for a battery module with remaining

o : sell
lifetime T — t. Respectively, 7
module.

The installation costs can be computed according to

Ttinsts for AB #0
Cinst (AB) = { Olmt for AB=0 }

is the price for selling such a

with the penalty for changing the battery size 7jps;. The installation
costs are not dependent on ¢ or AB.

The final component from Equation 2 to be calculated is E(cye),
the expected cost of unserved energy. This, of course, depends
on the future solar generation and load, which is unknown. We
make the pragmatic assumption that the load trace from the year
before the resizing time can be used to compute the expected load

!Battery lifetime depends both on calendar age, about 8-10 years, as well as the total
energy flux through the store. In our work, we conservatively choose a maximum
calendar age of 8 years and, for simplicity, ignore aging due to energy flux.

2This models the fact that the system owner has no motivation to purchase a module
whose lifetime exceeds that of the remainder of the system.
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trace for the next year. An entire year of data is used to ensure
that the seasonal component is captured®. Specifically, the ARMA
model from [8] is used to generate ten one-year load traces based
on the last year’s load trace. Interestingly, we found that using the
same approach to generate solar traces (i.e., using the past year to
generate ARMA traces for the next year) decreased the accuracy
of the resizing. Thus, in this work, the actual solar data from the
last year is used for computing the resizing, rather than ARMA-
generated traces. The resulting ten one-year load and solar trace
pairs are then simulated for different battery size changes AB, and
the mean unserved energy UE,,¢qn AB is noted for each AB. Then,
E(cye(t, AB)) is calculated for the remainder of the time period T
using the price of electricity per kWh in USD ny g as:

mean,AB

UE
Bcue (1, AB)) = —2aB 4 (T 1) « 7y

Thus, our algorithm is the following:

(1) Use the past year’s load and solar trace to compute the initial
PV sizing.

(2) At each resizing point, carry out steps 3-7.

(3) Use the prior year’s (known) load to compute optimal ARMA
parameters.

(4) Use the ARMA model to generate ten traces for the next
year’s expected load.

(5) Use the prior year’s solar trace to form ten one-year load
and solar trace pairs.

(6) For each possible battery size change, simulate the ten trace
pairs to compute the unserved energy for the next year. Use
this to calculate the extrapolated battery costs and expected
unserved energy costs for the remainder of the lifetime of the
battery, i.e., 8 years.

(7) Determine the battery size change that minimizes the total
cost in Equation 2.

Note that the sizing decision models the trade-off between battery
costs and unserved energy costs.

Also, note that the choice of resizing interval balances two costs.
Resizing too often can lead to higher installation costs, whereas
resizing too seldom can also lead to a cost increase as it takes
longer to react to changes in load. The choice of resizing interval
that minimizes the total cost is discussed in Section 4.

Finally, note that this algorithm can be viewed as a stochastic
Model-Predictive Controller, where the ARMA-derived load traces
constitute the set of forecasts, the remaining lifetime of the battery
is the control horizon, and the resizing interval is the control period.
The re-optimization of the expected future cost over the control
horizon by tuning the change in battery size then maps directly to
the stochastic MPC paradigm [4].

4 NUMERICAL EVALUATION

In this section, we numerically evaluate our algorithm in the context
of a case study based on the Pecan Street Project in Austin, TX [1].
Specifically, we choose solar and load traces from seven homes in
this project and compute the gains from resizing storage in response

3For more information on seasonality and the impact of non-stationarity in load traces,
see Section 4 in Reference [6].
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to changes in the load. We begin by describing the parameters used
in our evaluation.

4.1 Parameters used in the evaluation

4.1.1 Battery parameters. We used battery model 1* from Refer-
ence [7]. As in [6], the battery’s size is expressed in number of cells,
where one cell holds 0.011 kWh, and its parameters were taken
from Reference [6]. The battery buying price is also taken from
Reference [6]. The battery selling price parameter expresses the
selling price relative to the buying price: 0.9 means that the selling
price is ﬂ'ge” =09 irge”. These parameters can be found in Table
1.

Table 1: Battery parameters used for the evaluation

Cell size (kWh) 0.011
Battery buying price (USD/kWh) | 500
Battery selling price parameter 0.9
Battery lifetime (years) 8
Installation costs (USD) 15

4.1.2  Other parameters. We assume that the installed cost of a
PV system is $2,000/kW . As the battery lifetime is set to 8 years
and PVs frequently offer a warranty for 25 years, this PV price is
depreciated by a % factor, for a resulting cost of $640/kW.

We did not choose the cost of unserved energy using electricity
prices from the US, since the price there, which is around 0.12 USD
per kWh, would have led the optimal battery size to be 0, as it
would not be worth investing in a battery in the first place. Instead,
unserved energy costs are set to 0.3 USD per kWh, which is typical
for many countries (for example, the cost of energy for households
in Germany is 0.31 USD [2]). A higher value leads to a larger battery,
and with a cost around 0.3 USD per kWh, the battery is reasonably
sized. This enables us to evaluate how well the resizing algorithm
works.

For the initial PV sizing, the simulation approach from Reference
[6] was used with the target level of expected unmet energy of 0.05
and confidence level 0.95.

We obtained solar and load traces from the Pecan Street Project
[1]. For all simulations, the length of the solar and load trace to be
simulated was the lifetime of a battery, i.e., 8 years. Additionally,
one more year was used at the start of the traces for the initial
sizing.

Finally, although only load changes are analyzed, we also tested
our resizing algorithm assuming changes in solar generation, and
the results are essentially identical to that with changes in load,
and thus are not presented here.

The rest of this section is structured as follows. First, it is investi-
gated how well the algorithm computes the battery size. Then, we
study how well it reacts to changes in the load trace. Finally, we
look at the impact of resizing interval on total costs.

“This is midway between the cost in the US  ($3000/kW)
https://news.energysage.com/how-much-does-the-average-solar-panel-installation-
cost-in-the-u-s/ and the cost in Germany ($1000/kw) https://www.pv-
magazine.com/2018/03/20/pv-has-the-lowest-lcoe-in-germany-finds-fraunhofer-ise/
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Table 2: Other parameters

PV price (USD/kW) 640
Unserved energy costs (USD per kWh) | 0.30
Length of evaluation (years) 8

4.2 How well does our algorithm compute the
optimal battery size with one-shot sizing?

Although one-shot sizing is not the focus of our work, we first
investigate the quality of our algorithm in this simple setting. We
selected seven different year-long trace pairs from different houses
in the Pecan Street data set [1]. Since we did not have traces of
length 8 years, we selected one year of traces and concatenated
these to produce 8-year long traces. For each house, the battery
size computed by one run of our sizing algorithm (i.e., steps 3-7)
that only knows the past one-year’s history is compared to the
optimal battery size computed by an oracle that knows the future
load profile. In addition to the chosen battery size, the total costs
corresponding to the chosen battery size are also compared.

Table 3: Battery size in cells

Algorithm: Size | Oracle: Size | % Difference
2450 2300 6.5%
2450 2300 6.5%
4650 4700 -1.1%
5500 5500 0%
5700 5750 -0.9%
2250 2200 2.3%

Table 3 shows the chosen and optimal battery size in cells, and
Table 4 compares the sum of battery and unserved energy costs.
Each row represents one of the seven houses. We see that the
optimal size as computed by the sizing algorithm is quite close to
the oracle-based optimal size. In the second part of this question,
we will discuss what effect these sub-optimal (slightly oversized)
values have on the total costs.

Table 4: Battery and unserved energy costs with algorithm’s
optimal size and oracle-based optimal size, in USD

Algorithm | Oracle Cost Cost
Cost Cost | Difference | Difference (%)

$23,463 $23,450 13.1 0.06%
$26,704 $26,681 23.4 0.09%
$70,129 $70,125 4 0.006%
$59,497 $59,497 0 0.0%
$74,114 $74,113 0.7 0.001%
$23,577 $23,575 14 0.006%
$24,963 $24,938 25.1 0.1%

Table 4 shows the sum of battery and unserved energy costs for
an eight-year simulation of the seven trace pairs for the battery size
as determined by the sizing algorithm and the optimal oracle-based
battery size. Additionally, it shows the cost differences. We find
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that even when the battery size is not optimal, its total costs are
very close to the optimal total costs. The maximum cost increase
is close to 0.1 percent, and in all but two cases, it is significantly
below 0.1 percent.

Given the general uncertainty about the future load, we conclude
that the sizing computed by our algorithm is close to optimal in a
one-shot setting.

4.3 Does resizing reduce costs?

We now compare the total costs as computed by the resizing algo-
rithm to the total costs if no resizing takes place and the battery
keeps its initial size.

We first generated synthetic traces with four different change
patterns, which are meant to model charging of an electric vehicle.
As before, we concatenated traces to create 8-year traces. Addition-
ally, for each trace, the change was applied after the first two years
of the simulation. The first two traces are subject to a load increase
by 8 kWh per day, which is the amount an EV would typically
charge in one day, assuming that it drives 46km/day® and has an
efficiency of 16 kWh/100km °, which are typical today. In trace 1,
this is a night-only increase, leading to 8 hours per night with an
increase by 1 kWh. This models an EV charging overnight. In trace
2, the increase is equally distributed across the entire day, with an
hourly increase of % kWh. This models an EV charging throughout
the day. The last two traces are subject to a load decrease by the
same amount, where the changes are applied in the same fashion
for trace 3 as for trace 1 and trace 4 as for trace 2. This models the
sale of an EV. We ensured that even when the load decreased, it
never became negative, and that the cumulative load change stayed
the same.

Table 5: Total costs with and without battery resizing, in USD.
Trace 1: night load increase, trace 2: all-day load increase,
trace 3: night load decrease, trace 4: all-day load decrease

Trace fizynamic flynamic Cstatic
1 $56,132 $56,094 | $56,469
2 $54,748 $54,738 | $54,809
3 $49,232 $49,264 | $49,518
4 $50,419 $50,431 $50,569

Table 5 shows the total costs, i.e. PV costs, battery costs, and

unserved energy costs, of the resizing intervals 52 weeks (0(512 )
ynamic

8 . - .
dynamic) as well as those without resizing cgzgzic-

For the no resizing option, the battery keeps the size that is initially
computed to be optimal throughout the simulation. While the costs
are lower in all four traces with the resizing of the battery, the
savings are relatively small, e.g. smaller than 0.7 percent for the
8-week resizer.

The saving is significantly larger for the traces 1 and 3, which
had nightly changes. This change pattern has a stronger effect on
the optimal battery size than the change pattern used for traces 2

and 8 weeks (c

SThe typical driver in Texas drives 10,500 miles/year, which is about 46km per work-
ing day https://www.carinsurance.com/Articles/average-miles-driven-per-year-by-
state.aspx .

®https://pushevs.com/electric-car-range-efficiency-epa/
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and 4. For trace 1 for example, the optimal battery size increases
from 2450 cells to 3050 cells after the change, whereas it is 2800
cells for trace 2. Therefore, the costs that can are saved by resizing
are larger for these two traces.

Taking into account that the PV costs of 28928 USD cannot be
changed, the relative saving increases, peaking at around 1.4 percent
for the 8-week resizer. While it does make sense to resize the battery
as it reduces the total costs, the cost difference is surprisingly small.
This is because the role of storage in our setting is essentially only
to displace the cost of unmet load. If this cost is relatively low, due
to the low price of grid electricity, then modifying storage size only
marginally affects the overall cost.

4.4 How close is our resizing algorithm to the
offline optimal?

We now compare total costs incurred by our resizing algorithm

to that of an an oracle-based resizer (cop;) to see how close our

algorithm is to optimal. This allows us to investigate if the limited

improvement in performance is due to our resizing algorithm or

due to a limited possible savings even in the optimal case.

Table 6: Total costs with resizing and with oracle-based re-
sizing, in USD. Trace numbers as in Table 5

Trace | ¢gmic | Copt | Cstatic | Cstaric | Ratio
“Copt _Ctsiynamic (%)

1 | $56,094 | $56,055 | $414 $375 90%

2 | $54738 | $54713 | $97 $71 73%

3| $49.264 | $48,790 | $729 $254 35%

4 | $50430 | $50,168 | $401 $138 34%

We compute the costs for the optimal battery sizes before the
change in the load pattern and after the change in the load pattern,
Chefore and Cafter, respectively. The optimal costs can be computed
as copt = % * Chefore T g * Cafter T 15, as the installation costs also
have to be taken into account. Table 6 shows the results.

The second column shows the cost achieved when dynamically
resizing storage every 8 weeks and the third column shows the
optimal cost. The maximum achievable cost reduction, which is
the difference between the static costs cszqricand the optimal costs
Copt is shown in the fourth column. The fifth column displays the
actually achieved cost reduction, i.e. the static costs cszqric minus
the costs of the dynamic resizing algorithm cgynamic’ and the last

column is the ratio of the reduction in costs from our algorithm to
the optimal.

The table provides three main insights. First, the fourth column
shows that the amount of money that can be saved by resizing,
even in the optimal case, is rather limited. It amounts to only about
$100 to $700 for a system that costs several tens of thousands of
dollars. The takeaway point is that resizing helps, but not by much.

Second, given that c,p; is an unachievable lower bound, the dy-
namic resizing algorithm’s performance is quite good. On average,
more than 55 percent of the achievable cost reduction was achieved,
with a maximum of 90 percent for the first trace.

Finally, the resizing algorithm performs better when the optimal
battery size increases due to an increase in load. On average, more
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than 80 percent of the maximum cost reduction is achieved when
the optimal battery size increases, as opposed to an average of only
around 35 percent when the optimal battery size decreases. This
is mostly likely due to the slight oversizing of the battery by our
algorithm, as shown in Table 3. If the initial size is a little too large,
it matches load changes that lead to an increasing battery size, i.e.,
traces 1 and 2, better than changes that lead to a decreasing battery
size, i.e., traces 3 and 4.

4.5 What is the optimal resizing interval?

56200 -

56180 -

56160 -

56140 A

56120 -

Total costs

56100 A

56080 -

56060 -

0 20 40 60 80 100
Resizing interval in weeks

Figure 1: Total costs of different resizing intervals

Figure 1 shows the total costs for trace 1 from the previous
question for different resizing intervals. Three features are apparent,
as discussed next.

The first insight is that the graph is spiky instead of smooth.
Table 2 shows how the battery sizes are adapted in the simulation
period for various different resizing intervals. The vertical red line
at week 104 signifies that the change happened at this point. We
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Figure 2: Battery sizes over simulation period for different
resizing intervals

can see that depending on when the resizing happens, the chosen
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battery size is different. The greater the gap between week 104
and the time of resizing, the more of the data used for the resizing
comes from a trace that reflects the new load pattern. As the new
trace has a larger optimal battery, this means that the later after
week 104 the resizing is, the larger the battery size. This is true
for resizings that take place before the end of week 156, as after
this point, the entire data used for the resizing comes from the new
trace. For some resizing intervals, the battery is resized multiple
times, which leads to higher installation costs, but a lower sum of
battery and unserved energy costs. How fast the resizer reacts to
the change does not only depend on the resizing interval, but also
on when the change happens. For this trace, the 60-week resizer can
react by increasing the battery size after 120 weeks. The 52-week
resizer on the other hand can only react after 156 weeks, as the
change happens after 104 weeks. Therefore, the total costs of the
60-week resizer are lower than those of the 52-week resizer. This
randomness of when the resizer reacts and by how much it reacts
leads to a spiky Figure 1.

The second insight is that with increasing resizing interval, the
total costs also increase. One would expect there to be such a trend,
as it takes longer until change is detected with a larger resizing
interval. While this trend is quite obscured by the randomness
described above, it holds true globally, which can for example be
seen for the resizing intervals of 24 and 96 weeks. Figure 3 shows the

31001 —-- 24 weeks
96 weeks

3000

2900

2800

2700

Battery size in cells

2600

2500

0 100 200 300 400
Time in weeks

Figure 3: Battery sizes over simulation period for the resiz-
ing intervals of 24 and 96 weeks

development of the battery sizes for these two resizing intervals.
As can be seen, the 96-week resizer takes longer to detect the
change, while the 24-week resizer reacts comparably fast. Although
the double resizing leads to higher installation costs, the saving
that comes from the better-fitting battery size outweighs these
additional costs. The total costs for the 24-week resizer are 56,067
USD, while those of the 96-week resizer are 56,171 USD. The pattern
that longer resizing intervals take longer to react can also be seen
when comparing the costs of the resizing interval of 88 to 100 weeks.
However, as noted above, this is clouded by the spikiness of the
graph.

The third observation is that most of the total costs in Figure 1
are quite close together. The costs for all resizing intervals between
4 and 92 weeks are between 56,060 USD and 56,140 USD, which is
a range of 80 USD. As discussed above, the sizing’s timing plays a
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crucial role in the sizing decision’s outcome. The more of the new
trace is used in the sizing decision, the closer the outcome is to the
cost-optimal size. Smaller resizing intervals usually take multiple
steps before reaching the final battery size. However, battery sizes
that are not perfectly suited, e.g., an intermediate sizing around
2800 cells, do not significantly increase the sum of battery and
unserved energy costs. In comparison to the sum of these two costs
with the optimal battery size after the load change of 3050 cells, a
battery size of 2800 cells increases this sum by about 12 USD per
year. As these large sizing differences rarely last for a longer period,
the cost difference is quite small.

The data indicates that there is no clear answer to the question
which resizing interval minimizes the costs. While there is a slight
trend of a cost increase for increasing resizing interval, this trend
is especially clear for long resizing intervals of more than around
70 weeks. Moreover, the total costs show a large volatility that is
connected to the randomness of when a load trace change occurs
and when the next resizing is. While the 60-week resizer performs
well in this scenario, it could perform worse if the load change
is after 120 weeks. Thus, the total costs of these relatively large
resizing intervals can vary depending on the exact trace. While
there is no clear cut-off value, the data for other load change times,
i.e., after 1 year, after 3 years and after 4 years, shows that resizing
intervals below 40 weeks perform well irrespective of when the
change occurs. Those resizing intervals therefore seem to be a good
choice to reduce costs as much as possible.

5 DISCUSSION AND CONCLUSIONS

This paper is a preliminary exploration of the benefits from peri-
odically resizing storage. Nevertheless, we find that, contrary to
our prior intuition, resizing storage does not appear to significantly
reduce costs. Indeed, in our setting, we find that even an optimal
resizing algorithm that fully knows the future reduces overall costs
by less than 1%, so even a highly sophisticated resizing algorithm
is not likely make a substantial impact on overall costs. However,
our results depend on the following strong assumptions:

e We assume that the load and solar traces from the Pecan
Street Project in Austin, TX, are representative of residential
buildings worldwide.

e We study only four types of load changes.

e Electricity costs are assumed to only include the cost of en-
ergy and do not have a connection cost or a time-of-use
component; nor is there a feed-in tariff. In a real-world set-
ting, these more complex situations would apply and would
vary from country to country.

e We model the effect of battery degradation with a linear de-
cline in cost of storage over time, which ignores degradation
due to energy flux.

We are aware that changing these assumptions may change our
results. Therefore, we believe that there would considerable merit
in a more thorough analysis of the problem.
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