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ABSTRACT
Choosing the number of solar panels and the amount of storage
needed to meet a certain fraction of the load in a microgrid setting
is a difficult problem that needs to balance the competing objec-
tives of efficiency, robustness, and cost. Prior work in this area
makes the unrealistic assumption that solar panels are to be in-
stalled on a single roof that is capable of supporting all the panels
required. In reality, we may need to deploy solar panels on sev-
eral roof segments, each of limited size, and each with its own tilt,
orientation and installation cost. This paper presents an algorithm
for sizing solar panels and storage in this context. We evaluate the
robustness of our approach using traces derived from the Pecan
Street Dataport dataset and demonstrate the value of our approach
by using it to size a hypothetical installation on the British Antarc-
tic Survey’s research base in Antarctica.
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1 INTRODUCTION
With the rapid decline in the cost of both solar photovoltaic (PV)
generation and storage, solar and storage systems are increasingly
adopted to provide carbon-free renewable energy throughout the
day [14]. However, PV systems and storage are still quite expensive
in absolute terms, so it is necessary to find the smallest possible
size of the system that meets electricity load needs [16]. Specifi-
cally, given a solar profile, the typical hourly solar generation from
a single solar panel, and the load profile, characterized as hourly
demand for a year or more, we would like to choose the number
of solar panels and the amount of storage (a sizing) so that the
load profile is met with a certain quality of service (QoS). We call
a sizing that meets the desired QoS criterion a feasible sizing.
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Figure 1: A rooftop with six roof segments.

Choosing a feasible sizing is complex because it needs to balance
multiple objectives, including:
• Pareto efficiency: It should not be possible to simultaneously

reduce both the number of solar panels and the size of the
storage without violating the QoS criterion.
• Robustness: Feasibility should not be violated due to small

variations in solar energy and load in the future. Note that
robustness and efficiency cannot be simultaneously satis-
fied.
• Cost: The cost should be as low as possible, taking into ac-

count the cost of panels and storage, the installation cost,
and the need for robustness.

This important and practical problem has been studied in the lit-
erature using approaches ranging from optimization and stochas-
tic network calculus to simulation [16]. However, priorworkmakes
the simplifying assumption that solar panels are to be installed on
a single site, typically a rooftop, and that the rooftop is capable of
supporting as many solar panels as desired. Moreover, all portions
of the roof are assumed to have the same tilt and orientation. In
reality, we may wish to deploy solar PV on several roof segments1,
as in Figure 1, each of limited size, with its own tilt, orientation and
installation cost. While this may appear to be a trivial change, the
problem of sizing solar and storage, even for a system with only
two roof segments, is far more complex. Intuitively, the reason for
this complexity is that some roof segments may have a higher po-
tential for solar energy production or may better match the load
profile, but also have higher installation costs or smaller panel ca-
pacity. In contrast, others may have lower installation costs and
larger capacity, but have a poor solar production potential. Choos-
ing the number of panels to place on each roof segment to produce
sufficient energy to meet the QoS criterion at the least overall cost
1For uniformity of notation, we use ‘roof segment’ to mean either the entire roof or
a part of it, on one building or several.
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is a complex problem and the focus of our work. Specifically, our
contributions are:

• We formally state the problem of sizing solar PV and storage
on a set of roof segments with different orientations and
installation costs and present an algorithm to solve it.
• We implement the algorithm and evaluate its correctness on

realistic solar and load traces.
• We use our approach to size a hypothetical solar PV and

storage for the British Antarctic Survey’s research base in
Antarctica, based on real data.

2 RELATEDWORK
A person looking to install a rooftop solar PV and battery system
wants to know the least-cost sizing that meets their system per-
formance target, e.g. meeting 50% of their load. The optimal sizing
depends on the location, tilt, and orientation of each roof segment,
as well as the building’s load profile and the fixed and marginal
costs of system components and installation. In practice, the sizing
of solar PV and battery systems has often been done using a “rule-
of-thumb”; for example, Tesla [2, 3] takes into account a location,
roof layout, and a proxy for load, such as the monthly electricity
bill, to calculate a system sizing. Such methods are imprecise, since
they rely on aggregate PV generation and load metrics.

In the literature, the sizing of PV and storage systems has been
studied in several contexts, including micro-grids [9, 10, 13] and
building-scale systems [16, 21, 22]. At a high level, the strategy
used by existing work is to assume the availability of load and PV
generation measurements for one or more years, which in recent
years have become more readily available for consumers [4, 18],
and use them to compute a sizing that would be optimal over the
given data. Notably, ReOpt Lite [8, 20] is a web-hosted sizing calcu-
lator where users can specify location, hourly load profile, roof lay-
out, and other relevant parameters to compute a sizing that maxi-
mizes value or robustness metrics.

Our recent work [15, 16] takes into account the stochastic na-
ture of PV generation and load profiles, and proposes a method
based for computing the cheapest robust sizing that meet a target
performance with a specified level of statistical confidence; this
work–and others such as ReOpt–rely on the assumption that solar
panels are installed on a single roof segment, and cannot be applied
to multi-roof environments. In this paper, we present an algorithm
for computing a robust sizing for multiple roof segments.

3 PROBLEM FORMULATION
This section presents our model for the sizing problem.We assume
that a user, such as a prospective system owner, can obtain (a) a set
of solar traces corresponding to the generation from a single panel
placed on each roof segment and (b) a representative load trace.
We also assume that some storage is required in the system, that
the solar panels are connected to the same storage unit, and that
there is no loss of power on these connections. Our goal is to find
a feasible, robust sizing that is Pareto efficient, and therefore has
the least cost. Table 1 shows the notation used in the remainder of
the paper. Using this notation, we can make this goal more precise,
as follows.

Goal: Given number of roof segments 𝑁 , time period on which
the QoS criterion is calculated 𝑇 , target unmet load 𝜀, confidence
interval 𝛾 , fixed and marginal cost for the 𝑖𝑡ℎ solar panels 𝑐 𝑓𝑖 and
𝑐𝑚𝑖 , marginal cost for storage 𝑐𝑏 , largest possible number of solar
panels that can be installed on the 𝑖𝑡ℎ roof 𝑎𝑚𝑎𝑥

𝑖 , largest possible
battery size𝑏𝑚𝑎𝑥 ,𝑁 solar tracesS𝑖 , and the load traceL, find solar
sizing A and storage sizing 𝑏 such that
• It is feasible, i.e. for all time 𝑡 , with probability greater than

1-𝛾
𝑢 (A, 𝑏, 𝑡, 𝑡 +𝑇 )
|L[𝑡, 𝑡 +𝑇 ] | ≤ 𝜀 (1)

• It minimizes the cost function

𝐶 (A, 𝑏) =
∑

𝑖 |𝑎𝑖≠0
(𝑐 𝑓𝑖 + 𝑐

𝑚
𝑖 ∗ 𝑎𝑖 ) + (𝑐

𝑏 ∗ 𝑏) (2)

where the bound is robust, that is, holds for future loads that are sta-
tistically the same as in the past. Note that, for any non-zero load
profile, a sizing with a sufficiently small number of solar panels is
always infeasible.

4 SOLUTION APPROACH
Our solution extends prior work by Kazhamiaka et. al. [16], which
solved the sizing problem for a single roof segment. The key idea
in their work is to simulate the behaviour of an ensemble of histor-
ical load and solar traces to construct a distribution of feasible and
efficient sizings; A Chebyshev bound on this distribution finds the
least-cost sizing that meets the QoS with a given confidence.

Specifically, their sizing algorithm first computes the feasible
Pareto frontier of solar and storage (A, 𝑏) sizing tuples correspond-
ing to each solar and load trace pair. By definition, decreasing the
number of panels in a sizing on this frontier necessarily increases
the storage capacity and vice versa. For a given trace pair, they
compute the first point on the frontier by choosing the maximum
number of panels and using simulations to compute the amount
of unmet load as they progressively increase the battery size from
0. This finds the minimum battery size needed to ensure that the
QoS target is met (so that the sizing is both feasible and efficient).
They then reduce the amount of solar generation by removing one
panel and recompute the minimum battery size to find the next
point on the frontier. Given a set of such frontiers, they compute
a Chebyshev bound on the set. The least-cost point on this bound
is a feasible, robust sizing that also meets the QoS target (it is not
Pareto efficient, but then no Pareto efficient sizing is robust). Note
that the system cost minimization objective is only brought in at
the final step of the algorithm.

We cannot directly use this algorithm in a multi-roof segment
setting because computing the entire Pareto frontier turns out to be
intractable. Specifically, to compute the next step on the frontier,
the reference algorithm reduces the number of panels by one, then
finds the corresponding storage needed to meet the QoS bound.
When there are 𝑁 roof segments, since each roof segment has its
own energy generation profile corresponding to its tilt and ori-
entation, reducing the number of panels by one on different roof
segments would result in different amounts of storage needed to
compensate, resulting in a Pareto frontier that is a hyper-surface,
not a line. Computing the hyper-surfaces leads to combinatorial
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Symbol Meaning (units)
𝑁 Number of roof segments
𝑖 Index of roof segment
𝑇 Time period over which the which QoS criterion is

computed (days)
𝛾 confidence level for robustness
𝜀 the target upper bound on unmet energy as a frac-

tion of overall load |L|
𝑐
𝑓
𝑖 Cost of installing a panel on the 𝑖𝑡ℎ roof segment

($)
𝑐𝑚𝑖 Marginal cost of installing a panel on the 𝑖𝑡ℎ roof

segment ($)
𝑐𝑏 Marginal cost of storage ($/kWh)
𝑎𝑚𝑎𝑥
𝑖 Largest possible number of panels on the 𝑖𝑡ℎ roof

segment
𝑏𝑚𝑎𝑥 Largest possible battery size (kWh)
𝑛 Total number of hours provided in each solar/load

trace
S𝑖 An hourly solar power generation trace for one

panel on the 𝑖𝑡ℎ roof segment; |S𝑖 | = 𝑛
S A vector of hourly solar power generation trace for

panels on each roof segment; S = {S1, . . . ,S𝑁 }
S𝑖 [𝑡1, 𝑡2] A subset of the 𝑖th solar trace from time step 𝑡1 to

time step 𝑡2 (kW)
|S𝑖 [𝑡1, 𝑡2] | Total energy produced by panels allocated in the

𝑖𝑡ℎ segment from time step 𝑡1 to time step 𝑡2 (kWh)
L An hourly load trace (kW); |L| = 𝑛
L[𝑡1, 𝑡2] A subset of the load trace from time step 𝑡1 to time

step 𝑡2 (kW)
|L[𝑡1, 𝑡2] | Total energy used in the load trace from time step

𝑡1 to time step 𝑡2 (kWh)
𝑎𝑖 Number of panels, as computed by the algorithm,

allocated to 𝑖𝑡ℎ roof segment; 0 ≤ 𝑎𝑖 ≤ A𝑚𝑎𝑥
𝑖

A The sizing, a vector of allocations 𝑎1, 𝑎2, …, 𝑎𝑁
𝑏 Size of battery, as computed by the algorithm; 0 ≤

𝑏 ≤ 𝑏𝑚𝑎𝑥 (kWh)
𝑢 Unmet energy for a given allocation vector, battery

size, load trace, and solar trace (kWh)

Table 1: Table of notation for the problem formulation. Note
that A, 𝑏, and 𝑢 are outputs of the algorithm and depend on
the trace pair (S𝑖 ,L), but for clarity of notation, this depen-
dency is not explicitly denoted.

explosion, and, even if computed, it is not obvious how to find a
statistical bound on them.

To fix ideas, consider a roof with five roof segments, indexed
1 . . . 5, which can host up to (𝑎1, . . . , 𝑎5) panels. Given a trace pair,
we first use simulations to compute the storage needed for the al-
location (𝑎1, . . . , 𝑎5). To find the next points on the Pareto frontier,
we would need to compute the storage needed for the allocations
(𝑎1−1, . . . , 𝑎5), . . . , (𝑎1, . . . , 𝑎5−1). In the next step, wewould need
to consider all the ways in which we could reduce the total num-
ber of panels by 2, which leads to a combinatorial explosion. As
described in the next section, instead of trying to compute the en-
tire Pareto frontier, we use a stochastic gradient descent approach
to try to find the least-cost sizing on the Pareto frontier. Intuitively,

Symbol Meaning (units)
𝜂 Number of subintervals sampled, one of each a

least-cost sizing is found. Calculated at the begin-
ning of the algorithm as detailed in Section 5.5.

𝜁 AdaDelta hyperparameter. Fudge factor for numer-
ical stability. Default 0.1. Refer to Algorithm 2.

𝜌 AdaDelta hyperparameter. Decay rate used in cal-
culating exponentially moving average for gradi-
ents. Default 0.9. Refer to Algorithm 2.

𝜉 A PV-battery sizing pair (A, 𝑏).
𝜇𝜂 The empirical mean of all 𝜂 least-cost sizings.
Σ𝜂 The empirical covariance of all 𝜂 least-cost sizings.
Ξ A set of Chebyshev upper-bounded sizings, found

in Section 5.4.
𝜉∗ The output of the algorithm, the minimum-cost siz-

ing on boundary Ξ.
Λ2 The “practicality sizing” factor. Determines the dis-

tance between 𝜉∗ and 𝜇𝜂 .
𝛽 Hyperparameter to strike a balance between 𝜂 and

Λ2. Default 0.1. For details see Section 5.5.

Table 2: Table of notation used only in the sizing algorithm.

instead of bringing cost in only at the end, we use the system cost
to guide a stochastic exploration of the Pareto frontier.

5 SIZING ALGORITHM
This section provides a detailed description, pseudocode, and visu-
alization of the algorithm, including the generation of solar and
load traces, the system simulation and stochastic gradient descent
process, the statistical bound, and how to extract a robust sizing.

5.1 Algorithm Overview
Before diving into the technical details of our algorithm, we give
an overview of our solution with reference to later subsections.
Additional notation used in this section can be found in Table 2.

At a high level, the process of computing a sizing consists of the
following three steps:

(1) Acquire PV generation traces for each roof segment and
load traces, which can be from on-site measurements or syn-
thetically generated. Sample 𝜂 intervals from these traces to
form an ensemble of (possibly overlapping) PV generation
and load trace tuples (S𝑖 , L).

(2) For each trace tuple, find a set of sizings through stochastic
gradient descent that meets the target QoS criterion.

(3) Compute a statistical bound on the set of sizings and select
a sizing from those found along the bound.

The number of trace tuples, 𝜂, represents a trade-off between
algorithm runtime and the tightness of the statistical bound on
the sizing.The runtime scales linearly with 𝜂, while the bound gets
asymptotically tighter with more samples; the precise relationship
is described later in Section 5.5.

Our approach to finding the least-cost sizing in the search space
is to adapt a stochastic gradient descent algorithm. We focus our
search on the Pareto-optimal sizing subspace. The unmet load of
a sizing is calculated by simulating the operation of the system
over the given traces. A simulated gradient of total system costs is
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computed to guide the direction of the search. The simulation and
stochastic gradient descent process are detailed in Section 5.3.

We find the least-cost sizing for every data sub-sample, creating
a set of such sizings. We compute the statistical bound on the dis-
tribution of sizings represented by the set. As in Reference [15], an
empirical multivariate Chebyshev bound [23] is used to calculate
a hyper-ellipsoid bound that is centered at the mean the sizings
set and scaled according to the desired confidence 𝛾 . Finally, we
generate a set of sizings that lie on the upper portion of the bound
and select the lowest-cost sizing from this set as our output. The
process of finding the Chebyshev bound is detailed in Section 5.4.

5.2 Obtaining Solar and Load Traces
The algorithm relies on hourly PV generation (one per roof seg-
ment) and load traces (S𝑖 ,L). The user may have access to solar or
load traces if they own a pyranometer or a smart electricity meter,
although it is possible to obtain both load and per-roof-segment
PV generation traces using the proxy techniques described next.

5.2.1 Solar Traces. In the United States, hourly solar traces can
be generated through tools such as NREL’s PVWatts calculator [7].
The calculator requires parameters that are more easily obtained,
including the geographical location of the roof segments, and, for
each roof segment, its tilt, orientation, and an estimated perfor-
mance loss. It then calculates the solar traces based on solar ra-
diation data measured in past years. Alternatively, if hourly hori-
zontal solar irradiance is measured through a pyranometer, then
in-plane irradiance can be calculated using the equations in [12].

5.2.2 Load Traces. Unlike solar activity, load traces depend on hu-
man behaviours, making generating synthetic load traces more
challenging and less reliable. However, recent work has shown
that an ARMA model for generating load traces, when trained on
load patterns from neighbouring houses where data is available,
generates traces that can be used for sizing [24]. Using a load pro-
file database like the one provided by EERE [1], it is often possible
to find a load dataset that closely matches the monthly aggregate
load values of the target site, which are typically available.

5.3 Finding Minimum-Cost Sizings
Given the solar and load traces, we sample𝜂 sub-intervals of length
𝑇 from each trace using a sliding window approach. creating an en-
semble of equally-represented, shorter solar-load subsamples. For
each subsample in the ensemble, we want to compute a sizing that
meets the target performance at a minimum cost via simulated sys-
tem operations to obtain the unmet load, denoted as 𝑢 (A, 𝑏, 𝑡1, 𝑡2)
over the time interval [𝑡1, 𝑡2], as in [15].

A stochastic gradient descent algorithm can be used to quickly
find the minimum-cost sizing if the search space is convex and
differentiable. However, this does not hold at the edges where 𝑎𝑖
goes from 0 to 1 due to fixed per-roof-segment installation costs.
To get around this problem, we split the search space into several
convex search spaces where fixed costs are ignored: one for each
combination of roof segments. For example, if the search space has
three roof segments A, B, C, then we have seven sub-spaces: A, B,
C, AB, AC, BC, ABC. We then use a stochastic gradient descent

algorithm to efficiently search each space and find least-cost siz-
ing across all of search spaces taking into account fixed costs post
hoc. This mechanism, along with selecting the sub-intervals, are
demonstrated later in Algorithm 4 under Section 5.6.

Stochastic gradient descent requires a starting point on the Pareto
frontier and a cost function. An initial sizing is the maximum num-
ber of panels on each roof segment and a derivedminimum storage
size 𝑏∗ that leads to a feasible sizing via binary search as specified
in Algorithm 1. The cost function is simply the cost of the system:
𝐶 (A∗) = 𝐶 (A∗, 𝑏∗) via Equation (2).

Algorithm 1 Cost Function for a Solar Allocation

1: function C(A)
2: 𝑏∗←𝑚𝑖𝑛0≤𝑏≤𝑏𝑚𝑎𝑥 𝑠 .𝑡 .𝑢 (A,𝑏,𝑡1,𝑡2)

|L [𝑡1,𝑡2 ] | ≤ 𝜀, via binary search
3: if 𝑏∗ does not exist then
4: return∞
5: end if
6: return 𝐶 (A, 𝑏∗) = ∑

𝑖 |𝑎𝑖≠0 (𝑐
𝑓
𝑖 + 𝑐

𝑚
𝑖 ∗ 𝑎𝑖 ) + (𝑐

𝑏 ∗ 𝑏∗)
7: end function

Given the cost function for a solar allocation, we then adjustA∗
via an iteration of a stochastic gradient descent algorithm, with
cost function 𝐶 and a finite difference approximation of gradient,
i.e.

𝜕𝐶

𝜕𝑎𝑖
A∗ ≈ 𝐶 ({𝑎1, . . . , 𝑎𝑖 + 1, . . . , 𝑎𝑛}) −𝐶 (A∗) (3)

In our implementation, we experimented with several different
stochastic gradient descent algorithms and settled onAdaDelta [26].
Its exponentially decaying gradientmechanism eliminates the need
of setting an initial learning rate and we found that it works con-
sistently well with different orders of magnitudes of solar/load
trace combinations. Other algorithms such as RMSProp [25] and
AdaGrad [11] work equally well but require manual adjustment of
learning rate to be efficient.

In our implementation, we set AdaDelta’s two hyperparameters,
𝜌 and 𝜁 , to 0.9 and 0.5 respectively. The first hyperparameter rep-
resents the decay rate used to calculate an exponentially decaying
running average for gradients and the objective function, and the
second is used in a division to maintain numerical stability. The
stopping condition of the algorithm is when the cost C(A∗) ex-
ceeds the decaying average of the cost function for previous itera-
tions. The pseudocode for this process is described in Algorithm 2.

Figure 2 shows a typical search path of AdaDelta in two di-
mensions of PVs. The background color gradient shows the cost
at each PV sizing computed via grid search. The cost value starts
high near A𝑚𝑎𝑥 and gradually decreases as allocations on both
roof segments decrease, and the gradient stays relatively constant.
However, at pv1=3 the cost starts to increase with a unit decrease
of pv1, and the search path changes direction to trade-off fewer al-
locations of pv2 and replace it with more allocations of pv1, keep-
ing in mind cost efficiency. Ultimately the search terminates near
the true minimum in the search space, denoted by the X mark.

5.4 Chebyshev Bound
As in Reference [15], we rely on amultivariate concentration bound,
based on Theorem 1 in Reference [23] to find a robust sizing by
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Algorithm 2 Find the least-cost sizing through system simulation
and stochastic gradient descent

1: function find_sizing(𝑡1, 𝑡2, subsets)
2: A∗← {A𝑚𝑎𝑥

𝑖 : 𝑖 ∈ subsets}
3: search_path← empty list
4: 𝑆 ←

⃗⃗
0 ⊲ 𝑆,Δ are AdaDelta intermediate variables

5: Δ←
⃗⃗
0

6: 𝑚← C(A∗)
7: while C(A∗) ≤ 𝑚 do
8: search_path.add(A∗)
9: ∇𝐶 (A∗) ← { 𝜕𝐶𝜕𝑎𝑖A

∗ : 𝑖 ∈ subsets}
10: ⊲ Approximation by equation (3)
11: 𝑆 ← 𝜌𝑆 + (1 − 𝜌)∇𝐶 (A∗)2

12: 𝐺 ←
√
Δ + 𝜁
√
𝑆 + 𝜁

◦ ∇𝐶 (A∗) ⊲ Element-wise product

13: A∗←A∗ −𝐺 + 𝑁 (0, 1)
14: Δ← 𝜌Δ + (1 − 𝜌)𝐺2

15: 𝑚← 𝜌𝑚 + (1 − 𝜌) C(A∗)
16: end while
17: return 𝑎𝑟𝑔𝑚𝑖𝑛A∈search_path C(A) ∪ {0 : 𝑖 ∉ subsets}
18: end function

Figure 2: Starting from the top right, the green dots mark
the search path for a typical AdaDelta run. The Xmarks the
optimal (min-cost) sizing.

treating the set of points on the Pareto frontier as i.i.d. samples
from an unknown distribution. The bound is parameterized by the
covariancematrix of the set of sizings, themean of each dimension,
and the desired confidence 𝛾 .

We denote each of the 𝜂 sizing pairs A (𝑘) , 𝑏 (𝑘) as an (𝑁 + 1)-
dimensional sizing 𝜉 (𝑘) ≜ (𝑎 (𝑘)1 , 𝑎

(𝑘)
2 , . . . , 𝑎

(𝑘)
𝑁 , 𝑏 (𝑘) ). Then, the un-

biased empirical covariance Σ𝜂 is defined by

Σ𝜂 ≜ 1

𝜂 − 1

𝜂∑
𝑘=1

(𝜉 (𝑘) − 𝜇𝜂 ) (𝜉 (𝑘) − 𝜇𝜂 )T (4)

where

𝜇𝜂 ≜ 1

𝜂

𝜂∑
𝑘=1

𝜉 (𝑘) (5)

is the empirical mean. Note that Σ𝜂 is required to be non-singular
(invertible) for subsequent computations. When it is not, it implies
that there is no variability in one or more roof 𝑖 because it is either
not used or maximized for all subsamples. We shall remove it from

Algorithm 3 Chebyshev Bound-Finding Algorithm

1: function find_bound(Λ2, 𝜉 (1) , . . . , 𝜉 (𝑘) )
2: 𝜇𝜂 ← 1

𝜂

∑𝜂
𝑘=1 𝜉

(𝑘)

3: Σ𝜂 ← 1
𝜂−1

∑𝜂
𝑘=1 (𝜉

(𝑘) − 𝜇𝜂 )(𝜉 (𝑘) − 𝜇𝜂 )T
4: singular_dimensions← empty list
5: while Σ𝜂 is singular do
6: Find 𝑖 such that Σ𝜂𝑖 = 0
7: singular_dimensions.add(𝑖, 𝜇𝜂𝑖 )
8: Remove 𝑖𝑡ℎ row and column for Σ𝜂 , remove 𝜇𝜂𝑖
9: end while

10: search_queue← empty queue
11: for 𝑖 ∈ {1, . . . , }\ singular_dimensions do
12: 𝜉∗← 𝜇𝜂
13: 𝜉∗𝑖 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝜇𝜂𝑖 ≤𝜉𝑖 ≤𝑎

𝑚𝑎𝑥
𝑖

𝐿({𝜇𝜂1, . . . , 𝜉𝑖 , . . . , 𝜇𝜂𝑁 })
14: if 𝜉∗𝑖 exists then
15: search_queue.enqueue(𝜉∗)
16: end if
17: end for
18: Ξ← empty set
19: while search_queue is not empty do
20: 𝜉∗← search_queue.dequeue()
21: dir← 𝐿(𝜉∗) ≥ Λ2 ? 1 : −1
22: all_inside?← true
23: for 𝑖 ∈ {1, . . . , }\ singular_dimensions do
24: 𝜉neighbor← {𝜉∗1, . . . , 𝜉

∗
𝑖 + dir, . . . , 𝜉

∗
𝑁 }

25: if 𝐿(𝜉neighbor) ≥ Λ2 then
26: all_inside?← false
27: end if
28: search_queue.enqueue(𝜉neighbor)
29: end for
30: if 𝐿(𝜉∗) ≥ Λ2 and all_inside? then
31: Ξ← Ξ ∪ 𝜉∗
32: end if
33: end while
34: return {𝜉 ∪ {𝜇𝜂𝑖 : 𝑖 ∈ singular_dimensions} : 𝜉 ∈ Ξ}
35: end function

subsequent calculation and use 𝜇𝜂,𝑖 as its the final allocation, as
implemented in line 4 of Algorithm 3.

The multivariate Chebyshev bound is expressed as an (𝑁 + 1)-
dimensional hyper-ellipsoid of sizings Ξ that bounds the 𝛾 proba-
bility density mass of the empirical distribution. Since we are in-
terested in the upper-bound of each dimension, we also specify
that any point in Ξ must be non-dominated by other points inside
the hyper-ellipsoid, i.e. if 𝜉 ∈ Ξ, then no sizings inside the hyper-
ellipsoid (which may not satisfy our robustness requirement) can
be strictly larger than 𝜉 . We denote this in equation (7).

To define Ξ, we first denote

𝐿(𝜉) ≜ (𝜉 − 𝜇𝜂 )𝑇 Σ−1𝜂 (𝜉 − 𝜇𝜂 ) (6)

for any sizing 𝜉 . 𝐿 represents the distance between 𝜉 and 𝜇𝜂 . Then
we have

Ξ = {𝜉 : 𝐿(𝜉) = Λ2;∄𝜉
′
> 𝜉, 𝐿(𝜉 ′) < Λ2 .} (7)
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Figure 3: A three-dimensional Chebyshev bound on the up-
per yellow “dome”. Lower points represent 132 least-cost fea-
sible sizings computed over each subsample. Warmer colors
represent higher total cost.TheXmarks the least-cost robust
sizing.

where Λ2 satisfies the following equation:

(𝑁 + 1) (𝜂2 − 1 + 𝜂Λ2)
𝜂2Λ2

= (1 − 𝛾) . (8)

Finally, the output of the algorithm (𝜉∗) is the cheapest sizing in Ξ,

𝜉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 (A,𝑏)=𝜉 ∈Ξ𝐶 (A, 𝑏) (9)

Given the equation 𝐿 of the hyper-ellipsoid, we want to find the
boundary through Tabu search, using function 𝐿 to determine if
a point is inside or outside the boundary. We shall start at sizing
𝜇𝜂 and for each dimension 𝑖 , using binary search to determine the
least-cost point outside the boundary as the starting point of the
search, as implemented on and after line 10 of Algorithm 3.

We then perform a breadth-first Tabu search starting with these
sizings, admitting a point into Ξ if and only if it is outside or on
the boundary and all its lower-by-one neighbors are inside of the
boundary.

Algorithm 3 describes the computation of the bound on lines 2-
17, and the search for the cheapest system on the bound on lines 18-
33. In practice, the algorithm is implemented with a hashmap to
cache previously searched sizings, as well as boundary limits to
prune unrealistic sizings. See Figure 3 for an example of a three-
dimensional (two roof segments and one storage), non-dominating
partial hyper-ellipsoid Ξ that represents a particular sizing set.

5.5 Computing 𝜂, the Number of Samples
Wenowdiscuss how to compute𝜂, the number of data sub-samples.
Recall from equation (8) that given fixed 𝑁 , 𝛾 , and 𝜂, we compute
Λ2 which determines how close the Chebyshev bound is to 𝜇𝜂 . 𝜂
and Λ2 are inversely related; the larger 𝜂 is, the smaller Λ2. In
other words, using more samples can get us a cheaper system with
the same robustness guarantee. FromTheorem 2 in Reference [23],

when 𝜂 →∞, Λ2 approaches

Λ2∗ =
𝑁 + 1
(1 − 𝛾) (10)

from above. This is the lower limit of the gap between the center
of the ellipse (at 𝜇𝜂 ) and the bound.

Since we can obtain many samples from a large enough PV gen-
eration and load dataset, and the bound only gets asymptotically
tighter with more samples, we need to decide how many samples
are enough.Wewant to find an𝜂 that balances the runtime and sys-
tem cost. The trade-off can be controlled by introducing a parame-
ter 𝛽 > 0 and setting Λ2 = (1 + 𝛽)Λ2∗. For example, if 𝛽 = 0.1, we
get aΛ2 that is a factor 1.1 greater than theminimumΛ2∗ achieved
when 𝜂 →∞. From equation (8), this reduces to

𝜂2𝛽 − 𝜂Λ2 + 1 = 0, (11)
which forms a quadratic equation that has one real solution greater
than 1, giving us the number of samples corresponding to 𝛽 :

𝜂 =
Λ2 +

√
Λ4 − 4𝛽
2𝛽

. (12)

In practice, we find that setting 𝛽 = 0.1 gives a reasonable
trade-off, requiring 220 simulations for 85% confidence level and
660 for 95% confidence level over two roof segments, and perform-
ing within 1% cost of the sizing result for a lower 𝛽 value such as
0.01, which requires 10 times more computation.

5.6 Putting it Together
Recall that the algorithm consists of three parts: sampling 𝜂 sub-
intervals from a PV generation and load dataset, running simu-
lations and gradient descent to find the minimum cost sizing for
each data sample 𝜉 (1) , . . . , 𝜉 (𝜂) over each separated convex search
space, and computing the Chebyshev bound Ξ. Algorithm 4 pro-
vides pseudocode that composes the algorithms described in this
section to computer a min-cost robust sizing.

Algorithm 4 Robust Sizing Algorithm

1: function sizing(𝑁,𝑛,𝑇 , 𝜀, 𝑐
𝑓
𝑖 , 𝑐

𝑚
𝑖 , 𝑐𝑏 , 𝑎𝑚𝑎𝑥

𝑖 , 𝑏𝑚𝑎𝑥 , S𝑖 , L)

2: Λ2← (1 + 𝛽) 𝑁 + 1(1 − 𝛾)

3: 𝜂 ← Λ2 +
√
Λ4 − 4𝛽
2𝛽

4: Ξ∗← empty set
5: for subsets ∈ 𝑃 ({1, . . . , 𝑁 }) \∅ do
6: ⊲ Use power set to separate convex search spaces
7: for 𝑖 ∈ 1..𝜂 do

8: 𝑡 ← 𝑖 ⌊𝑛 −𝑇
𝜂
⌋ ⊲ sample with sliding window

9: 𝜉 (𝑘) ← find_sizing(𝑡, 𝑡 +𝑇, subsets)
10: end for
11: Ξ← find_bound(Λ2, 𝜉 (1) , . . . , 𝜉 (𝜂) )
12: 𝜉∗← 𝑎𝑟𝑔𝑚𝑖𝑛 (A,𝑏) ∈Ξ C(A, 𝑏)
13: Ξ∗← Ξ∗ ∪ 𝜉∗
14: end for
15: return 𝑎𝑟𝑔𝑚𝑖𝑛 (A,𝑏) ∈Ξ∗ C(A, 𝑏)
16: end function
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6 EVALUATION
We evaluate our multi-roof sizing algorithm using two datasets.
The first dataset is extracted from the Pecan Street Dataport [6]
and has four years of PV and residential load data. Here, we com-
bine data from multiple homes to synthesize a multi-roof sizing
problem. In section 6.1, we present the sizing results using leave-
one-year-out cross-validation to show its robustness. In section 6.2,
we compare our results with a sizing recommended by a prelimi-
nary sizing calculator available on Tesla’s website [3].

The second dataset consists of pyranometer and load measure-
ments from the British Antarctic Survey’s Rothera station, where
solar PV can be deployed on up to five roofs across different build-
ings. We apply our sizing algorithm and present the results in 6.3.

6.1 Evaluating Robustness on Residential Load
We evaluate the robustness of our algorithm using four years of PV
residential load and datameasured at 49 homes in Austin, Texas [6].
We run leave-one-year-out experiments, where 3 years of data are
used as input to the sizing algorithm, and the final year is used as
validation to check whether the sizing met the QoS targets. Given
a confidence 𝛾 , we expect that the computed sizing will have at
most 1-𝛾 fraction of the tests exceed the unmet load target 𝜀.

To create a multi-roof sizing scenario, we use PV generation
data from two homes to represent two roof segments, dubbed pv1
and pv2, that have noticeably different PV generation profiles as
shown in Figure 4. In addition, each home in the dataset has a dis-
tinct load pattern. To compare the sizings according to the shape of
each home’s load profile rather than its magnitude, we rescale the
data so that on average, across four years, each solar panel gener-
ates 0.2 kW and the mean load is 2 kW. We assume that each home
can install up to 60 panels (12 kW) on each roof segment, and up to
120 kWh of storage. We also assume a fixed cost of $2000 for each
roof segment, a variable cost of $2000/kW [19], and a battery cost
of $500/kWh, similar to the current cost of a Powerwall [2].

We evaluate our algorithm for two QoS targets, 𝜀 = 0.1 and
0.5. The first target represents a scenario of near-total grid inde-
pendence, while the second represents a more fiscally-prudent sce-
nario where solar PV primarily meets loads during the day and the
grid is used to meet load at night. We also evaluate two confidence
levels, 𝛾 = 0.85 and 0.95, with the former level expected to pro-
duce a cheaper albeit less robust sizing.

Figure 5 shows the aggregate results of 196 tests consisting of
4 leave-one-year-out experiments across 49 homes. As the target
validation loss increases from 10% to 50%, the distribution visibly
shifts to the right, as expected. Moreover, when the target loss is
10% (𝜀 = 0.1), only 4.1% and 1% of the tests exceeded the loss at
85% and 95% confidence levels respectively. Similar results are seen
with a loss target of 50% (𝜀 = 0.5), with 5.1% and 2% of tests exceed-
ing the loss target at 85% and 95% confidence level respectively.
These results empirically demonstrate that the sizings computed
by our algorithm are feasible and robust. They are also reasonably
tight, as seen by the increase in the density of the loss distribution
left of the loss target indicated by the red line in each figure.

Figure 6 shows the average sizing results across all homes and
years given different unmet load target and confidence level combi-
nations. Notably, pv2 is slightly more favored than pv1.This can be

Figure 4: Average hourly solar generation for two roof seg-
ments in the Pecan Street dataset. Note that pv1 peaks in the
morning hours and pv2 peaks in the afternoon hours.

Figure 5: Aggregated leave-one-year-out test results on 196
test across 49 houses, showing% of tests that land outside the
unmet load target for 𝜀 = 10% and 50%, with the red vertical
line indicating the unmet load target.

explained by an observation that the majority of houses have load
peaks in the evening and storage costs are reduced when more
panels are allocated to pv2. Also, there is a 4-5× increase in bat-
tery and 2-3× increase in PV when 𝜀 goes from 0.5 to 0.1. This is
because meeting the more stringent loss target requires the system
to generate and store PV generation by day for use at night.

We also found that the sizing for the majority of the homes
includes panels on both roofs, despite each having enough space
to hold all the allocated panels. We hypothesize that the differing
peaking times for the two roof segments cause PV generation to
be more spread out over the course of the day, which reduces the
need for storage. To confirm this, we studied two load patterns
shown in Figure 7. The first house has a more pronounced evening
load peak, which better matches the generation profile from pv2.
Indeed, for this home, our algorithm suggests a sizing that uses
only pv2. In contrast, the sizing for the second home uses both
roof segments. This confirms our intuition that the optimal sizing
attempts to match PV generation profiles to load profiles.

To summarize, our experiments using the Pecan Street Dataport
dataset confirm that our algorithm produces feasible sizings that
are robust to variations in the solar and load profiles.



e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy Brad Guanqiao Huang, Fiodar Kazhamiaka, and Srinivasan Keshav

Figure 6: Average sizing results across all houses and years,
including PV allocation for the two roof segments, battery
amount and total system cost.

Figure 7: Two typical residential load patterns. House 3527
shows load more concentrated in the evening and its siz-
ing contains only pv2. House 1792’s load is more evenly dis-
tributed and its sizing contains both roof segments.

Figure 8: Comparison of cost and loss for a system sized
by our algorithm (orange) and the Tesla’s algorithm (blue)
across 49 houses; results for a given house are connected by
a line. The red vertical line indicates the unmet load target
used in our algorithm.

6.2 Comparison with Tesla’s Sizing Algorithm
We now compare our sizing algorithm to the one on Tesla’s web-
site that is used to generate a preliminary sizing estimate2 [3]. We
caution that this is not an “apples-to-apples” comparison because
their online calculator does not explicitly consider multiple roof
segments, or incorporate a loss objective or a confidence criterion,
as in our work; rather, this comparison serves to illustrate how our
sizing approach compares to a widely-used alternative.

The Tesla calculator’s goal is to size a system that can generate
enough power to meet the home’s net load and a battery that can
power the home for approximately one day. It uses two parameters:
location and monthly bill. Our normalized load traces correspond
to a 1440 kWhmonthly load, which leads to a $165 monthly bill un-
der Austin Energy’s residential pricing scheme [5]. Using Tesla’s
algorithm, the sizing computed is 12.24 kW solar panels and 3 Pow-
erwalls, equivalent to 40.5 kWh of storage, at a total cost of $52,850.
Note that this assumes a single rooftop. Hence, to compare it with
our algorithm, we select the same two roof segments as before and
try three allocations: all on pv1, all on pv2, and half on each roof.
We take the allocation with the lowest validated loss to compare
with the results of the same house as computed by our algorithm.

We run our sizing algorithm with a target of 5% unmet load
over any 365-day period, a confidence interval of 75%, and a search
precision comparable to the calculator: 1 kW for PV, and 13.5 kWh
(one Powerwall) for storage. We evaluate the loss from the two
sizings using simulations, Specifically, we sample 50 sub-intervals,
1-year of length, over 4 years of validation data. We then compute
unmet loads for each subinterval and report the median loss across
all windows.

The sizing comparison is summarized in Figure 8. On average,
the sizings generated by our algorithm require fewer PV panels
and a larger battery compared to the Tesla algorithm, at 6.8 kW and
60.5 kWh respectively. The average cost is $49,370, a 6.5% decrease,
and all houses have under 5% median validated loss.

A closer look shows that our algorithm suggests cheaper sys-
tems for houses that are oversized by Tesla. 39 out of 49 houses
have ≤0.5% loss using the Tesla algorithm (this is the blue cluster
on the far left). Of these, 18 houses also have ≤0.5% loss even when
using a smaller 8 kW/27 kWh system (33% smaller PV and battery),
indicating oversizing. With our algorithm, these 18 houses have a
higher loss, but still under 5%, and also have an average cost of
$47,639, an 8.4% saving.

Occasionally, our algorithm suggests a more expensive sizing
than the Tesla algorithm (orange points to the right and above the
corresponding blue point). In these cases, we found a large vari-
ance in load profiles across the years, which results in a more con-
servative sizing due to our use of the Chebyshev bound.

Finally, our algorithm found a better sizing for houses that are
under-sized by the Tesla algorithm. For such houses, which have
a high loss (>5%) with the Tesla algorithm, our algorithm found a
smaller sizing and thus a cheaper system, while still meeting the
QoS target. This difference reflects the benefits of considering load
profiles rather than only monthly bills.

2This preliminary estimate is later updated to generate a final sizing by a consultant.
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Figure 9: Satellite picture of the Rothera research station, with buildings annotated with name, solar power that it can support,
average PV radiation, orientation angle from true north, and tilt angle to the ground plane. Image used by permission of the
BAS.

Figure 10: Solar patterns averaged by hour for the five roof segments in the Rothera Station, with the three peak hours em-
phasized in red. Note that the Admirals and Bonner buildings receive more sunlight, on average, compared to the others.

6.3 Decarbonizing the BAS Rothera Station in
Antarctica

We have applied our sizing algorithm to the use case of partly de-
carbonizing the British Antarctic Survey’s (BAS) Rothera research
station, based on real traces. The average load of the station is 95
kW, with a peak of 130 kW. So far, the station has been powered
by diesel power generators that use 60𝑚3 of fuel per month on av-
erage, which is carbon-intensive and expensive to deliver to such a
remote location. Through its current modernization program, the
BAS aims to decarbonize the station by 2030. We study how the
station might hypothetically install a solar+storage system to con-
tribute to decarbonization.

The BAS provided us with six years of hourly horizontal solar
irradiance as measured through a pyranometer, and one year of
representative hourly load data from 2015, which was before the
initiation of the modernization program. At present, five buildings

in the station have been identified as suitable for solar PV installa-
tion, as shown in Figure 9. We therefore use the irradiance trace to
compute five separate PV generation traces, according to the tilt
and orientation of each potentially suitable roof segment as sug-
gested in Reference [12]; the resulting set of daily average PV gen-
eration profiles is shown in Figure 10. Note that the Admirals and
Bonner have higher solar generation potential than the other three
and are therefore the best candidates for PV panels. However, the
roof segment on Bonner is relatively small. Three other roof seg-
ments are less desirable, with Hangar having a slightly larger av-
erage radiation and the largest available area. Collectively, the five
roof segments can support up to 450 kWp of PV generation. Note
the two peaks in generation on the Admirals and Bonner roofs, due
to their northeast-facing orientation and the extended day during
the Antarctic summer. In contrast, the other roofs have a southeast-
facing orientation and single, lower generation peaks.
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Figure 11: Results of sizing for different confidence lev-
els and target unmet load. Note that allocation for less-
efficient roof segments NBH and Giants are 0 across all
tested loss/confidence combinations.

We also trained an ARMA model on the load data to create syn-
thetic load traces spanning six years, using the process described
in Reference [24].

The costs used in this study are a £5000 fixed cost for equipping
each roof, £1.18/Wp marginal PV cost (equivalent to £188 per𝑚2

panel which is assumed to be 160 Wp), and £670/kWh for batteries.
This data was used to compute the sizing for several system perfor-
mance targets, with 𝜀 ranging from 0.35 (meeting 65% of load) to
0.65 (meeting 35% of load), and confidence level 𝛾 at 0.85 and 0.95.

The results of the sizing are summarized in Figure 11, which in-
cludes the per-roof segment panel allocation, battery size, and to-
tal cost. No feasible sizing existed for 𝜀 = 0.35, due to the fact that
very little sunlight is seen in Antarctica between May and August.
Other 𝜀 targets resulted in varied systems sizings: with 𝜀 = 0.65,
the sizing requires very little battery capacity and most of the so-
lar panels are on a single roof segment, while for 𝜀 = 0.45 the
sizing was split more equally across two of the roof segments and
required roughly 500-1000 kWh of storage to meet night-time load,
depending on the desired confidence level. Notably, for 𝜀 = 0.45
and 𝛾 = 0.95, the preferred roof segments are not always those
which receive themost radiation (Admirals and Bonner), but a com-
bination of those that spread out PV generation over the course of
a full day (Admirals and Hangar).

Note that because we only had access to only one year of load
data, we were unable to carry out a leave-one-out analysis to eval-
uate the robustness of our sizing.

7 DISCUSSION AND CONCLUSION
In this work, we present an algorithm for choosing the number
of solar panels and the amount of storage needed to meet a cer-
tain fraction of the load in a microgrid setting. Unlike prior work,

which assumes that the desired number of panels can always be
accommodated on a rooftop, we take into account the pragmatic
issue that roofs typically incorporate multiple roof segments, each
with its own panel capacity, tilt, and orientation.This unexpectedly
leads to a muchmore complex sizing problem. Our solution, which
is based on stochastic gradient descent, allows us to compute siz-
ings despite the non-linear nature of the problem.We demonstrate
the robustness of our approach using a leave-one-out analysis and
the Pecan Street dataset. We also use our approach to compute the
sizing needed for different levels of decarbonization of the British
Antarctic Survey station in Rothera.

Our approach deals with the large search space by using stochas-
tic gradient descent to find least-cost, feasible sizings over repeated
trials and the computation of a Chebyshev bound over the results
of these trials. This approach has some limitations, as discussed
next.

First, when using solar and load traces from multiple years, one
of the years may have atypically low PV generation or high load.
A sizing computed using an atypical year tends to be more con-
servative, as is a Chebyshev bound that includes this sizing. Un-
fortunately, there does not appear to be a systematic approach to
identify anomalous traces in a fairly small set of traces.

Second, to make our search more efficient, we partition the non-
linear search space into a set of convex sub-spaces. This is reason-
able for a small number of roof segments (for example, in Rothera,
we used this approach with 5 roof segments). However, this ap-
proach does not scale well with the number of roof segments due
to a combinatorial explosion.

Third, we compute the Chebyshev bound using a multidimen-
sional breath-first Tabu search. This turns out to be memory inten-
sive, especiallywhen searching a large𝑁 -dimensional spacewhere
each point has 𝑁 neighbours.

Fourth, a Chebyshev bound sometimes leads to unintuitive re-
sults, an example being the recommendation of a handful of pan-
els on the Bonner building in Rothera. This is because the Bonner
building is part of a least-cost sizing for some runs of the stochas-
tic gradient descent algorithm and not others. When computing a
Chebyshev bound, however, this results in a small number of pan-
els being allocated to this building, a counter-intuitive result.

Finally, on an unrelatedmatter, we note that our sizing approach
assumes a microgrid setting, that is, with no payments for over-
generation from the grid using net-metering or feed-in-tariff. If
such payments are introduced, then the sizing problem becomes
far more complex, since the storage operation policy depends in
detail upon the nature of the grid payment scheme [17]. We defer
analysis of this more complex scenario, as well as to overcome the
limitations listed above, to future work.
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