"‘5-;-_ -, . ' : +’- o . M&'h‘ﬁ}-pm‘_‘hl* rnﬂ ;h",;‘f,r-.?"h:l:-f':; A s "i'”"_:_TJ v S - _."_L ;ﬂf‘ > .‘-'-"_;_t'_r_ -ﬂ - '_-‘.' 3 o a“.?:' » F e .‘-'..‘ e — e :
P,.‘ - gl p. a3 :W’%Hi Ju-\)'-f oy % Y e M - ™ ., S i i - - ¥l - Az iy | 4 4‘ - - e o
i . ! i Ty g T e A = L, ey + . - g =] - o mind) g
d 3 ’ - g i | gl A N o i, WA - 0 ey a0 e r 5 e Bb N i e val g P ks e » T
- - :.‘-LLI‘ P ’“‘-" - -l v ‘: _q-'.* 2w r..‘\ lv:_. (h‘t s .’N‘ % E * :t"" . : . B e P o R g - f:‘p e b - -] & o { 'y o
;_ 4 Ty ‘-‘__‘ L Paci ;}' Hﬁﬁ_ T il -"'is-l i', ¥ ._"-u ,_J-rf :.:: - "{ ‘f? - nrh T e o -J'r....g-"-'-‘I - ._ e 4“;;: \: »e #;M f...l ""..r" g o it :ﬂ" - ~ A ¢
. e . -, g, o8 = Pl o - i, . Nl o o . 5-\ o il T T ol - a y ; EAWNeN . - - s e Y — © g
<. o<~ ‘o B Rt i e S P e G RO R e A e s ko g Pt R e Y e 2 Bl B I P ol Wb | i
% e S e e TN e, < - L P e, £ e T Nt f:“ﬂﬂ'“— - L e e i = T . L -flia - 3
™~ - - “ . - N . + s o = b e T b of . g . T il iy g - 7 s -
o QW= N, ‘-\‘ e o g i R A i d o e = S L b = & - ' s F
-~ ‘" RS T ﬂ:k T, “_-"' R ACTEEe Y A Sy ‘_@_, e e Wl g = -'r:;“"‘"' Syl e - Yl >
g’ x . 2 e il Wl e R] - - e B 0 - - - ™ - - s e, d
- —" - ally =" - - W . - A . e -] e A b A a_ "~ - . - - =t - i
‘- Y - l.-m""lf'- ol :\" = - W:. . "’-“:“h‘- o, ﬁ'-.q" Pl - ‘v-‘-:jr {--'h- e =P - :_,4.-1..__ - .-. ’;'- P Y | =y . r s o
. - BN i gt T g4 e -‘l:‘ , Pyl - | g » n"“ . JJ- l-"}. i Fea e d":’ Mg = gl = ol i -
&“:':‘-‘ - e b T et o T . WUy A o M ", e g, R "y e 2 i A e T ol
s . - o o ™ i e T - A - “b.'_""'-"b L= = . = - W ' o ¥ s
] SV e T e N TN T o S - fn- i T g S Vit P = Tl apge ol T ey St L 2w e e -
3 N e A T e = L Y= T "!f::-- s y.r--:-:.-ﬁ-,‘ -.--ﬂ s bhier - . o L - st " s -~
2 - ¥ B T " S Y N, I Puinrtet F R T, S Fd -
LW - - - N UL g £ P) g - el - e 4 g. - :':\ l._» - : - ,.-.:; o -
-, - - e - 4 - W r" — o - = » i ¥ W - o —
i I B ~ g % o i 0 S T _ed *.f‘_--'# . o VS ' P e et Pt e S gy T e e o A L
_‘1""* " - "\\- M e S .:1' b - T S e '&“Lﬁ wili W - ef" e |- < - _-.- i o o~ ua"w il J-,u-. ' — £ - - " -
e S ;'“ * - Ty ¥ W ‘ P T -y vl s o/ -l-‘:' A e ey - ot s ¥,
f- "-!-\-q _-L._ - W . ‘.‘_ﬁ; e :.hn : ‘—lq-‘ - -h..."“ e : o - g "..- -H-H.r:--ll o h - —— -."“.:.- e e STy ; ‘-'_,_ ,:._ - “-. - - i &« . = -
- e - :‘“ o e WA \\. .""‘—\'-“:- -, -’ﬁ 4’.}5"‘ - g -*, I‘. L r - LT - = - " = o - . h-":f"‘-" p ¥
STV wp e TR N, o e S e T Py T T e P L i -
r - o e, TN gy e n . ﬁ,_ e e i - e [- 4 > -f"l’ . N L ' e, - g0 1 s —
b ¥ e - . . e - mC, T e P ’Hh:, - - BT e - 1;."1‘" }'I* = # s . gl e et~ T ' S ',.. = y o - o . #
- . oW g oy ™ ‘ﬁ*; . ""\h'h\ 4 e i ¥ Py i P gty Tl f S Foamil SN2l ’ Py . T T e | - " o - [" rJ —
"'_:'""‘"f P T H-. L L e L L et S ity a1 ;-"'- ~ rhl:-': = 8 . B 5. *! [- ; ! LY 1 . -h e, BF ke - RN Sl B & 2
- Y -t ” o ; Y . i . ! w = - f 7 FU # T, - . B - w i 4 i i /] =
4 b ¥y TR G r-—-'f] A 8 VAAR (:J : s B Ewl BF K FR =
= ! s Ea A .- . | Tl &N L i e B 3) . » . ! | e
TPl B BN E= BN E SIND LI FPOERAIRASNT
; | 3 - -ﬁa‘g..--—-.-""'w" g

~ . J
d-":,. r' - = wl
F- .
- - . LI
T — -
.-" "\r’
- #
- o -
- - - "
) -
-JJ' ¥ b
. .
- 8 e
L
s
L
(d 7
r
]
i
! 1 H "- .‘_
Ot Iy '
¥ % Oy s Nay ¢ } " P
o ¥ .I A 1 " iR \ [g’ I. -~ :_'#l 2 ",I... e o ¥
4 T { ™ o] P s el L L A Ry L .
f} SR g V= P g ¥k osoadt s o el e D B NEUE A Vo IR T : Y
e ‘.'F“ :}1!‘ } \-3 ;_l_lJf i "i,l ‘. \ -“'Lh [*r_-_' L IL:I ""!:“-,t"'_'il‘l “t‘ih’ln'u) ' .,“.
Talid W o 1] L \ 4 . o r' ; | G & '."I*.]‘l,f,l.‘ .'.'_. Y [Xry o l' . . oy
Ny =% i "? ¢ T L ot el LT l‘)'j;};.’-i’.?“rf? o
W 110 AN R e TS YRS A T el

.;' -.:f .Io Lo & I'_ .

W. 1,1;?‘:';:?: "rrl“

. '{?G’rft ; \
!;tl‘; -""-*-'.

I -f,l;}i T, - T
sy o 4 [-
o : b (gl S
Mol # ¥ !-f' -,1,."', ,

. _:.-

e e o ':ul" ‘{l
N et
o AL hr"'.'lr' ¢
g 1 g
[£ it .h_": Y A
"'.-"""'"-' Ve .
: A v Wi
AN VE T d .
.':'-,‘11":‘,'1!;' l-TuJ-'?- i e
2 #{ ;a L "

L ..

f 4‘."'.':' el

mr ',li' I"'_’ ..I'-' .
¥ ’ # "0' y

i 4 A !
3 b Y
' y
Ll el 1Y

" f"‘L: o
3 ""'_"-"' ; . 4 "-' .r
. &
CERE
L
!,»ll '._'.\
o o mh
- 0

i

]

o

' "

N

Ll
- ; b
T L3

- M,
) o
L]
¥ \]
Iy LE l

:
-

f e e
4 iy

S

')' AT A
j I".i-h ;‘J"'L-,o LA
48] _-'f}""l‘ s

Sh el

AL s it

IMPLEMENTATION OF PROLOG.

by
S. Keshav and Inderpal Singh Mumick
Supervisor : Dr. Niraj Sharma
MAY 1986

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY

DELHI

CERTIFICATE

This 1S to certify that t he report entitled
"Implementation of Prolog" is being submitted by S. Keshav and
Inderpal Singh Mumick to the Indian Institute of Technology,
Delhi in part fulfillment of requirements for the degree of
Bachelor of Technology in Computer Science and Engineering. This
report is a record of the work carried out under my supervision
and has not been submitted to any other University or Institute

towards any degree.

m\m
Date : May 8, 1986 Dr. Niraj Sharma
Department of

Computer Science and
Engineering, IIT Delhi.

ACKNOWLEDGEMENT

We would like to gratefully acknowledge support and help

from our project supervisor Dr. Niraj Sharma, as also from Prof.

P. C. P. Bhatt , who suggested this project and keenly guided our

literature survey, and Mr. N. C. Kalra, who kept the OMC 58000

system available to us against all odds.

The excellent diagrams in this report have been drawn by

Miss Suchitra Srinivasan.

Inderpal Singh Mumick

S. Keshav

(iii)

Abstract

ABSTRACT

Prolog is a powerful logic programming language developed at
the University of Marseilles, France around 1970. The language
is an implementation of First Order Predicate Logic. Its main
attraction is the ease of programming. Clear, readable, concise
and error free programs can be quickly developed.

This report describes an implementation of Prolog that we
have designed for the OMC 58000 running under the OMNX operating
system. We have written an interpreter, and have provided many
of its predefined predicates. Almost the entire language as
described in "Programming in Prolog" by Clocksin and Mellish has
been implemented. The interpreter is based on the concepts of

structure sharing, unification, and the lush control precedure as

described by Warren, Kowalski and Sammut.

ONE

THREE

INTRODUCTION

= =
[] L]]
o Ul W N

Dual Semantics

THE PROLOG LANGUAGE :

FOUR

FIVE

—

CONTENTS

Application Areas, 1

History of Prolog Imlementation,
Data Structures, 2

Prolog Procedures, 2

The Logical Variable, 3

of Proleg, 3

A BRIEF DEFINITION

Syntax and Terminology, 5

2l
2.2 Declarative and Procedural Semantics,
2

The Cut Operation, 8

AN OVERVIEW OF THE PROLOG IMPLEMENTATION

1

THE LEXICAL ANALYSER

AR IR helTolden T BUE fe ity
A.2 Rules for Token Recognition, 13
453

Program Outline for the Lexical Analyser,

THE PROLOG DATABASE

Atom Record,

Termlist Record,
Goaltree Record,
Coailllllitst Record, 125

1125
Integer Record,

Variable Reeord, LV
Functor Record,

16

18
20
22
22

e
5)c
5
S
Sis
5%
510
D
Sie
D

SIX THE

——

1
2
3
4
5 Clause Record,
6
7
8
9
1

IheNProcedure Table,
Example, 24

PARSER

Y OY O O O O
s © = @]

o Ul W -

The Grammar, 26
Clause Parser, 2]
DATF Parser, 30
ATFE and Term Parser,

Structure Parser, 36

il s EPar Selr 3/

24

32

*

10

12

155

26

SEVEN UNIFICATION

7y NSt riict ure Sharing, a4l
7.2 The Unification Algorithm, 45

EIGHT CONTROLLING EXECUTION : LUSH

Bel " State of the Prolog System;S=ob

8.2 The Lush Algorithm, 56

8.3 Discussion of the Algorithm, 58

8.4 Example, 61

8.5 1Interfacing of Predefined Predicates,

NINE THE CUT OPERATION

S ——————————

1 Reset Backtrack Environment, 65
2 SheinkTeallStacik;, 65
.3 Recover Control Stack Space, 65

L]

9
9
9

TEN THE PREDEFINED PREDICATE INTERFACE
R s

64

10.1 Implementation of some important Predefined

Predicates, 66

10.2 How to Write your own Predefined Predicates, 69

ELEVEN ERROR HANDLING

TWELVE ORGANIZATION OF PROGRAM INTO FILES

2NN L trodiicEaen, . /4
12,2 Eiles, 74

THIRTEEN PROBLEMS FACED DURING IMPLEMENTATION

FOURTEEN USER MANUAL

AT el ise r fin terEalce, a8

i 28 isiing thet Systemi; 79

14.3 A Sample Session, 80

S Modi'ficaltions tel€locksin and Mellish,

IS5 ReiSiEE i ctlons, « 82
[P o R mitt S o \the System = 82
14.7 Available Predefined Predicates, 82

REFERENCES

o oo 4

81

84

CHAPTER ONE

INTRODUCTION

This report describes techniques for efficiently
implementing the programming language Prolog. It is written
mainly for those having some familiarity with Prolog. Those
nfamiliar should first refer to Chapter 1 in the book
"programming in Prolog" by Clocksin and Mellish.

We begin with a brief discussion of the language. This is

followed by a precise definition of the syntax and terminology in
Chapter 2.

1.1 APPLICATION AREAS

Prolog is a simple but powerful programming language
developed as a practical tool for logic programming. Prolog 1is
especially suited to symbol manipulation applicationssuch as
natural language processing, compiler writing, symbolic equation
solving, theorem proving and relational data bases. T Els
particularly apt for many AI applications.

1.2 HISTORY OF PROLOG IMPLEMENTATIONS

The first implementation of Prolog was an interpreter
written in Algol-W by Phillip Roussel 1972]. "This"weork ledi¥te
better techniques for implementing the language, which were
realised in a second interpreter, written in Fortran by Battani
and Meloni [1973]. A notable feature of this design is the novel
and elegant structure sharing technique for representing

structured data built up during computation. This representation
enables structured data to be created and discarded very rapidly,
in comparison with the conventional literal representation based
on a tree of linked records.

The first Prolog compiler was written by David Warren [1974]
at the University of Edinburgh. The compiler was developed on
the DEC 10 and translated directly into DEC 10 assembly language.
It used the same fundamental design, including the structure
sharing technique that was developed for the second Marseille
interpreter. However the implementation was 15 to 20" fold
faster, owing to compilation, and also because it was possible to
capitalise on the DEC 10 architecture which is particularly
favourable to the structure sharing technique.

Since then many implementations have come up around the

rntroduction

world. Each one provides new and different features, but the
basic design strategy has remained the same.

1.3 DATA STRUCTURES

a——

Data in Prolog is represented by generalized trees,
constructed from records of various types. An unlimited number
of different types of records may be used and they do not have to
be separately declared. Records can have any number of fields.
There are no type restrictions on the fields of a record.

The conventional way of manipulating structured data is
thcough the predefined construct and select functions (as in
Lisp). However data manipulation in Prolog is through a pattern
matching algorithm provided in a process called unification. The
ease in using Prolog comes partly from the fact that this data
manipulation is done automatically by the Prolog system and 1is
not to be specified by the programmer .

1.4 PROLOG PROCEDURES

Prolog is an exceptionally simple language for the user. A
Prolog computation consists of little more than a sequence of
pattern directed procedure invocations. Since the procedure call
plays such a vital part , it is allowed a more flexible mechanism
than in other languages. The special features are ...

1) When a procedure returns it can send back more than
one output, just as (in the conventional way) 1t may have
received more than one 1nput.

2) Which arguments of the procedure are inputs and which
will be output doesn't have to be determined in advance.
It mayiny factNvary fromsonelcalilsto fanother. Thiis
allows procedures to be multi-purpose.

3) L procedure may return several times sending back

alternative results. This allows procedures to be non-
determinate. This is in contrat to the determinate
procedures in a conventional language whose execution
terminates for ever with the return of a value. The
process of reactivating a Prolog procedure which has
already returned a value is known as backtracking.

4) There is no distinction in Prolog between procedures
and what would conventionally be regarded as tables or
files of data. Program and data are mixed together 1in
procedures and are accessed in the same way. Thus a
general Prolog procedure comprises a mixture of data (in
the form of facts) and rules for computing further data.

rntroduction ¢

1.5 THE LOGICAL VARIABLE

#-

A Prolog variable differs from a variable in a conventional
rogramming language. It is not a name for a specific memory
location and is not and can not be assigned values by the
programmer. The Prolog variable may in fact remain undefined for
any period of time, meaning that no value is assigned to it.
This may happen even while the variable is in use in a procedure.
Thus the machine oriented concepts of assignment and pointers are
not an explicit part of Prolog. Due to this special nature and
more flexible behaviour the Prolog variable is known as the
logical variable. We may summarize its special properties as ...

1) The computational behaviour of Prolog is such that the’
programmer need not be concerned whether or not a
variable has been given a value at a particular point in
computation, or with what this value might be.

20) The logical wvariable can be associated with a value of
any type.
3) A Prolog procedure may return as output an incomplete

data structure containing logical variables whose values
have not yet been specified. These variables can be
Faitter“fililled 1nt by other procedures. This isitachieved
diftomaticaltilyv ¥ inStihe collrselof UniEication, bultthas the
same effect as explicit assignments to the fields of the
data structure.

4) Two logical variables can be matched together, so that
both will have exactly the same status at all times.
These variables are said to share.

1.6 DUAL SEMANTICS OF PROLOG

Prolog has the unique property that a Prolog program can be
interpreted declaratively as well as procedurally. This property
has significantly affected the design of the language. It is also
the real reason behind the ease of use of the language.

For most programming languages a program 1is simply a
description of a process. The only way to understand the program
giciEseatw hethep Wi tllils i correct 1s¥to run it - either on a machine
With real data, or symbolically in the mind. Prolog programs can
also be understood this way, and indeed this view is vital whe:
Considering efficiency. We say that Prolog, like other
languages, has procedural semantics. It is this semantics which

~determines the sequence of states passed when executing the
- Program.

- However there is another way of looking at a Prolog program
?hl?h does not involve any notion of execution. Here the program
1S interpreted declaratively, as a set of descriptive statements
about a problem domain. From this standpoint the facts and rules

introduction

of a prolog program are nothing more than a convenient shorthand
for ordinary natural language sentences. Each fact/rule is a
statement which makes sense in isolation. It describes an object
rhat is separate from the program or machine itself. The program
ig correct if each statement is true.

This natural declarative reading is possible because the
procedural semantics of Prolog is governed by an additional
declarative semantics, inherited straight "from il ogies The
declarative semantics defines what facts can be inferred true
from the facts and rules given in the Prolog program. This is
regardless of how the program is executed to actually infer those
facts. That will be the province of procedural semantics.

The knowledge that Prolog is based on a declarative
semantics allows the programmar to initially ignore procedural
details and concentrate on the declarative essentials of the
algorithm. He can break up the program into small independently
meaningful units. This inherent modularity also reduces the

interfacing problems when several programmers are working on a
project. |

The prolog Language

CHAPTER TWO

THE PROLOG LANGUAGE : A BRIEF DEFINITION

The basic Prolog language can be considered as being made
up of two parts . The first part consists of a set of ‘llogical
statements, of a form known as Horn clauses. These are a special
subclass of general clauses which do not have any disjunctions.

The second part of Prolog consists of a very elementary
control language. ThroughWEhiscontEol information the
programmer determines how the Prolog system 1is to set about
satisfying a sequence of goals. The control language consists
merely of sequencing information, plus a cut primitive which
restricts the system from considering unwanted alternatives for a
goal sequence.

As discussed earlier there are two distinct ways ¢to
understand the meaning of a Prolog program, oOnhe declarative and
one procedural. As far as the declarative reading is concerned
one can ignore the control component of the program. The
declarative reading is used to see that the program 1s correct.
The procedural reading is necessary to see whether the program 1is
efficient or indeed practical. It must take care of the control
information.

We will now summarize the syntax of Prolog and briefly
describe its semantics (both declarative and procedural).

2.1 SYNTAX AND TERMINOLOGY

A Prolog program 1s a sequence of fclauses. Each clause
comprises a head and a body. The body consists of a sequence of
zero or more goals. For example the clause written ...

likes@mary, X)k c—plikes(mary, .), Likes(¥y X).

has likes(mary,X) as 1ts head and likes(mary,Y) and likes(Y,X) as
the goals making up its body. A clause with an empty body 1is
called a fact or a unit clause. For example

likes(mary, john). e Yotasfact

The head and goals of a clause are all examples of cog_Eound terms
(except the cut goal which is represented by the single character
'1'), Since the head and the goals either succeed or fail during

execution, they are referred to as boolean terms.

In general a term is either an elementary term or a compound
term. An elementary term is either a variable or a constant.

The prolog Language

A var@able is an 1identifier made up from letters, digits and
the underline character ' ', and beginning with a capital letter
or the underline.

X, Constant, , Answer, 3 blind mice e . aEeRvabEilablies

The variable consisting of a single underline character 1is
called the anonymous var iable. There may be any number of
anonymous variables in a clause and they are treated as distinct
variables. The scope of other variables extends to the clause 1in

which they are named.

f

| Constants are of two kinds - atoms and integers. Atoms are
identifiers falling into one of the following three syntactic
categories ...

1) A sequence of letters, digits, and underlines beginning
with a lower case letter.

2) A sequence of symbols (non letter, non digit)f
3) Any sequence of characters enclosed within quotes.

For example : a, prolog, #-2, =, ==, south_pole,'southrpole'
are all atoms.

Integers are numbers represented by a sequence of digits.

A compound term,also called a functor or an atomic formula
comprises a principal term and a list of zero or more terms
called arguments. The functor is characterised by its name,
which is the name of its principal term, and its arity, i.e. the
number of arguments. For example the functor written as :

college(iit, technical, india)

has the name college and arity 3. Its arguments are 1i1it,
technical, and india. The above notation wherein the principal
term is followed by the arguments in parenthesis is the standard
or canonical notation for functors. In addition functors of

arity one and two may be declared as infix, prefix or postfix
operators to allow a representation of the form

2R SNE = Ry notwP, = N factorial
instead of
E(2 3 = (X, e noki(R), factorial(N)
The principal functor of a boolean term(head or goal JI18

Called a predicate. The sequence of clauses whose heads all have
the same predicate is called the procedure for that predicate.

The Prolog Language

2.2 DECLARATIVE AND PROCEDURAL SEMANTICS

peclarative Semantics

The key to understanding a Prolog program declaratively is
to interpret each clause as a shorthand for a statement of

natural language. A non unit clause :
P ol Q; R, S-

is interpreted as :
P if Q and R and S.

We also have to interpret each boolean term in the program
as a simple statement. To do this we will also need to give a
uniform interpretation to each functor in the program. For
example consider the following set of clauses for appending and
reversing lists :

[} L)o
], L2, [XYL3]) :- append(L1, L2, L3)e

reverse((], []).
reverse([HYT], L) :- reverse(T, Z), append(Z, [BH 1 AE)

Note : 4 is used for the vertical bar.

The interpretations to be given are :

[] T he s nullsiREl st

(S ava] s The liStRwith head X "and tail Y.

append(X,Y, Z) : list Y when appended to list X gives
[F15S ERZ1e

reverse (X, Y) . List Y is the reverse of list X.

Considering each variable to be an arbitrary object, the
interpretation of the four clauses 1is :

1) The empty list concatenated with L gives L.

2) The list whose head is X and tail is L1, on concatenation
with list L2 gives the list whose head is X and tail is
.3, if L1 concatenated with L2 gives L3.

3) The reverse of the empty list is the empty Tis e

4) The reverse of the list whose head is H and Ealinl FitenT 1 &
the list L, if Z is the reverse of T, and Z concatgnated
with the list whose head is H and tail is empty is the
1535 s E ML

The declarative semantics of Prolog defines the set of
boolean terms which may be deduced to be true accopdlqg ;o t he
program. A boolean term can be deduced to be true 1if 1t 1s the

the Prolog Language

head of some clause instance and each of the goals of that clause
can also be deduced to be true. A clause instance is obtained by
substituting, for each of zero or more of its variables, a new
term for all occurances of the variable. This recursive
definition of truth governs the declarative semantics of Prolog.

procedural Semantics

Procedural semantics describes the way the Prolog system
executes a program to test the truth of a boolean term. The
sequencing of clauses and the sequencing of goals within clauses
plays a critical role in this algorithm, affecting the ability of
the system to infer truth.

Procedurally the head of a clause is interpreted as a
procedure entry point and a goal is interpreted as a procedure
call. The way in which a goal is executed to test i1f some
instance of 1t is true is defined as follows :

To satisfy goal P, the system searches for the procedure for
P. Clauses in the procedure are scanned until the head of one
matches or unifies with P. The unification process finds the
mosit general common instance of the goal and the clause. If a
match 1s found, the matching clause instance is activated by
Sigelcuit i ng in tucn, from left torright, each of the gealsiin its
podyess If at any time the system fails to find a matech for a
goal, 1t backtracks. During backtrack the system re jects the
most recently activated clause, undoing any substitutions made by
the match with the head of this clause. Next it reconsiders the
original . goal which activated the rejected clause, and tries to
find a subsequent clause which also matches the goal. Execution
terminates successfully if there are no more goals waiting to be
satisfied. In this case the system has found an instance of the
original goal which 1s true. Execution terminates unsuccessfully
when all choices for matching the original goal P have been
rejected. Execution may also never terminate.

In gencral, backtracking can cause execution of a goal P to
terminate successfully several times. The different instances of
P obtained represent different solutions. In this way the
procedure corresponding to P enumerates a set of solutions.

We say that a goal (or the corresponding procedure) has been
executed determinately if its execution is complete and no more
alternative solutions exist. This can be detected by the absence
Of any alternative clauses to match the goals invoked during the
€Xecution.

2.3 THE CUT OPERATION

Besides the sequencing of goals and clauses, Prolog provides
°flé other very important facility for specifying control
Information. This is the cut goal, written as ' !l '« This goal

The Prolog Language

is not related to the logic of the program and should be ignored

as far as the declarative semantics is concerned. Examples of
its use are :

Meme i XGERPX (IR)R = IS
member (X, [YE]) = member (" X, L) .

compile(S, €) := Eranslate(S,) IINassemble(C) %

The effect of the cut operator is as follows. When first
encountered as a goal, cut succeeds immediately. 1If backtracking
should later return to the cut, the effect is to fail the goal
which invoked the clause containing the cut. In other words the
cut operation commits the system to all choices made since the
parent goal was invoked. It renders determinate all computation

performed since and including invocation of the parent goal, up
until the cut.

Thus the second example above may be read declaratively as
d@liisiat compilation of S if € is a translation of S randMEHIiS
assembled" and procedurally as "In order to compile S , take the
first translation of S you can find and assemble it". If the cut
were not used here, the system might goon to consider other ways

o translating S, which though correct may besunnecessary ok
unwanted.

The above two uses of cut do not contradict the declarative
reading of the program. The only affect is to cause the system
to ignore superfluous solutions to a goal. This 1s the commonest
uUse of cut.

Cut can also be used in a way that a part of the program can
be interpreted only procedurally. One of such uses is the cut
fail combination. For example to say that an object X 1is
ordinary if it is not exceptional, one may write :

ordinarEy (R X)i —e xceptiionalf(@Xairs ., Faiil &
ordinary(X) .

The declarative reading of the second clause indicates that
ehdelava e ifsi o rdiiina ey T h 1 sEsilsiScilie aird yenot i mpilied bysthe
procedure. A better way to write the same procedure may be :

opdinary(X)) = notexceptional ("X)) .

cwerVieW of Prolog Implementation

CHAPTER THREE

AN OVERVIEW OF THE PROLOG IMPLEMENTATION

An implementation of Prolog rests on the design of :
1) A lexical analyser.

2) Data Structures for internal representation of the Prolog
database of facts and rules.

3) Parser and the associated syntax directed translation
scheme for translation of clauses into the internal
da tabase.

AN fiica tlon'.

5) Control mechanism for procedure call and backtracking.
6) The cut operation.

7) Various predefined predicates.

We devote a separate chapter for the discussion on the
implementation of each of the above.

The first is a simple task of converting an input stream of
characters into tokens which act as terminal symbols for the
parser.

Record formats are designed for each type of term in Prolog.
This means that we have separate records for atoms, 1lntegers,
functors and clauses. The facts and rules are represented
internally by a tree of such records.

The dynamic declaration of operators SiigniaE dicanic iy
complicates the grammar and the design of the parser. The parser
handlesthese operators through an ad hoc mechanism, akin to the
infix to postfix conversion scheme. The syntaxdirected
translation scheme basically builds the parse tree in terms of
the database records.

Unificationtiteicsh to mateh aigeal with a clause head to
Create a common instance of the two. New terms are also built up
as variables are bound to values. The represernitation of these
new terms is through the structure sharin technique described
later. Thus unification takes the place of tests and assignments
1N a conventional language.

10

overview of Prolog Implementation

The control mechanism is based on the lush algorithm
designed Dby Kowalski. As procedures are called, the current
state of the system is saved on a set of stacks - the variable,
trail and control stacks. However, because of the non
dJeterminate nature of Prolog procedures, the state can't be
popped off the stacks at the end of execution. Backtracking may
cause a return to the procedure to try other solutions. Only
when the procedure has no more solutions to offer can the state
be removed. Thus backtracking strongly influences the design of
ijush, since one must be able to rapidly save and restore an
earlier state of computation.

The cut operation makes determinate the execution of &Ll
prochures from the parent goal onwards. The control information
required for backtrack to these procedures can therefore be
discarded.

The predefined predicates are written as C functions. The se

predicates are also allowed to affect bindings of variables, and
to have both determinate or non-determinate execution.

1L

rexical Analyser

CHAPTER FOUR

THE LEXICAL ANALYSER

introduction

Whenever the parser desires the next input token, it calls
the lex1ca'l analyser. The lexical analyser scans the input line
and recognizes tokens, which it passes upwards to the parser.

4.1 The Token Buffer

The interfacing between the parser and the lexical analyser
is by means of the token buffer. This always contains the current
token. When the next token is desired, the lexical analyser fills
up the buffer area with the next token, which is thus made
available to the parser.

The structure of the token buffer is as follows -

struct token
begin
LTntistact
Cha Rty pDERs:
union
begin
int value ;
chal % "SEEPEE &
end
data
end

The start field identifies the position on the screen where
Phe current token starts. It is used for error handling = in case
oflan error in the current term, a mark is placed at the start

position indicating where the error arose.

The type field identifies the token type. We have adopted
the convention that in addition to the data types, punctuation
marks are also declared in the type field. The data types
possible are atom, 1nteger, variable and string. Punctuation
marks such as left parentheses, comma etc. are also declared in

the type field.

The union field contains either the integer value, in case
of an integer type, or a pointer to a character area that has a

copy of the input string in case of an atom, variable or string

type. In case of punctuation marks, Ehiilsifield” is nuli.

12

rexical Analyser

pAs an example the token for the atom 'ravi' is
begin
type = TYP ATOM
start position = 10 (say)
pointer to the string "john"
end

4.2 RULES FOR TOKEN RECOGNITION

———

Integers

They start with a digit and consist only of a sequence
ORI gl tavr el g 2000,

Atoms

- are enclosed within single quotes e.g. 'anything'

SRS A tEEw Eh W an s alphanumeric "and®icon tatiinsson ey
alphanumerics. e.g. anything

=aSstartEwil th¥any symbol' not a punctuatlon mark and

contain non alphanumerics only. e.g. =..
Variables
Lheysbegantwithtan ‘ioricapital ‘letter, anrdfcontain

alphanumerics or underscores.
Strings

They are enclosed within double quotes.

4.3 PROGRAM OUTLINE FOR THE LEXICAL ANALYSER

skip over spaces, comments and lines until a non white space
character is found.

switch (character)
begin
case punctuation mark : set the token's type field to
the appropriate value.

case double quotes collect a string.

case digit collect an integer.

case capital letter $ collect a variable.

case underscore collect a variable.

case small letter collect an atom.

collect an atom.

-

case single quotes

s

rexical Analyser

case symbol s colilectan atom;

end

To read a new line, we check the current source of line
input, which may be the terminal or some consulted file. A single
line of characters is then retrieved from this particular source.

To store a copy of the input string in case of atoms,

variables and strings, we use the function get_char_space(),
which returns a pointer to a suitable memory area.

14

patabase Structure

CHAPTER FIVE

THE PROLOG DATABASE

Introduction

The set of clauses input by a Prolog programmer is converted
into a data structure by the Prolog system and is stored in this
form. This data structure , essentially a database of records, is
used by the interpreter to answer queries.

At tﬂm; core of the database are the record types that
constitute it. These are as follows -

- Atom record

- Integer record
- Variable record
=sPFunctor record
Clause record

- Termlist record
- Goaltree record
- Goallist record

OO ~JOAOU1LpS WD
|

We shall consider each one in turn. For each record we describe

l- its structure
2= how it is created and used

5.1 ATOM RECORD

This is defined as
struct

begin
char type ;
char * name ;
char is predefined ;
(* procptr)();

end

- = S —— ———— -

Type | Name [is-predefiy procptr |

!
—— i —

SRR L | e ————— y

Type
This is a single character field that specifies the

type of the record, in this case, it is TYP ATOM, a predaefined
constant,

15

Databasé Structure

Name

The name is a pointer to the character string for the
atom name. When an atom is recognised by the lexical analyser, it
allocates character space and places the name in that area. This
area is pointed to by the atom record record created by the
parser. As in standard C convention, the name is null delimited.

Procptr

An atom name may be the name of a predicate. If this is
so, then the procptr field is a pointer to the chain of clauses
that defines the predicate. This field points to a C function in
case the predicate is predefined.

| The type of ‘the field is 'pointer to' function’'s " Ehissis
a pointer to a predefined C function. In case the field is to
point to a clause it must be appropriately cast.

Is predefined

Lhiistis atflag that istset 1f the procptr polnts taNane
function rather than to a clause list.

Creation

An atom record is created by a call to the function
get atom record(name), where name 1is a pointer to the atom's name,
and the function returns a pointer to the atom record 1t
allocates. '

Example
The atom 'grandfather' is stored as

‘ﬂvaﬂdfaﬁmrj

,

T.'jr;: No G roLT\tCY to o Fvoc_cduve
atom S
v e Frcdlca
wgrahdjajﬁcv'

(Li- b exists)
5.2 INTEGER RECORD

i, e g,

This is defined as

struct
begin
char type;
int integer value;
end

| Trnteqger |
THFC Jm :a.fgpn __,J

16

pDatabase Structure

Type
This is TYP INTEGER.

Integer value

The value of the integer. Note that the field is of

tgae 'int', so the largest number one can use in Prolog 1is
2 s l ®

Creation

This is by a call to get integer record(value). Value

is the integer value, and the function returns a pointer to the
integer record it allocates.

Note

By Prolog convention, characters that are read in by
the system using 'get' and 'get0' are also stored .as integers.
However, the integer value in this case is the ASCII value of t he
character read in.

Examg}e

20 1is stored as -

Ty P- n ijcv 20

5.3 VARIABLE RECORD

This is defined as

Strlect
begin
char type;
char * name;
int ofEset;
end

ij;,c Name OffSEt

Type
This is TYP VARIABLE.

Name

As in an atom record, this is a pointer to a null

17

patabase Structure

delimited character string for the name of the variable. The name
;s used for debugging purposes only.

Of fset

This is an integer which records the offset of the
variable from the start of the stack frame for the clause 1in
which the variable 1lies.

When the control reaches a clause, and the head 1is
matched, a frame of size 'number of variables in the clause' is
created on the variable stack. All variable instantiations are
doncminesthis frame on the stack. To find thescuLtretisy
instantiated value of a variable, it 1s hence necessary to
determine the position of the variable in the stack frame for the
clause . This is determined by adding the base of the clause
frame on stack to the offset available in the variable record.
Thus, the offset field provides us the means to determine the
current instantiation status of a variable.

Creation

This is by a call to get variable record(name). Name
is the name of the variable and the function returns a pointer to
the variable record allocated by it.

In Prolog variables have a scope extending over the
ciifialiseinswhich they ocecur. Thus“two or more . occurances of the
same variable name in a clause must be bound to each other, 1i.e.
whenever one of the is instantiated, so 1s the other. To ensure
this, we have decided to let all variables of the same name in a
clause to share the same clause record. This will automatically
carry out the desired binding. - |

The function get variable record is intelligent enough
to allow this sharing. For each clause, it maintains a variable
table that contains the names of the variables in the clause.
When a name is seen for the first time, it is entered 1n the
EPbille and a variable record is allocated for 1t. Subsequent
occurances of the name can be determined and they can easily be
made to share the same variable record.

Example

,(X;"j) ;- j: ather (X,A),fa_"the_r(.

18

pataba“ Structure

5.4 FUNCTOR RECORD

| rthis is defined as follows
| Struct

| begin

i char type ;

|

ATOM RECORD * principal term PEE)
TERMLIST * arqument ptr e
int arity ; i
end

‘ [Principal PGP T
Type J*tevmpaptv :,%L: i Avity I

Principal term ptr

-
’

| A functor of the form

| a(T1,T2,ss) hag 'a' aslthe princlpalutetm,
Pan atom , and Tl, T2 ... as a list of terms in the functor. The
principal term pointer points to the atom record for 'a'.

Argument ptr

F This points to a list of arguments of the Eunctor:.‘The
. arguments are chained together by the termlist records, the first
" termlist in the chain is pointed to by the argument ptr.
|

Creation

This is by a call to get_fn_record.

Example

dfather(X,Y) 1n the clause
! ' el g?andfai(tlfler()((Y) .- father(X,A), father(A,X)

1s saved as

patabase Structure

5.5 CLAUSE RECORD

——

This has the structure
Struct clause rec
begin B
char type;
FN RECORD * head;
char * goal ptr;
Struct clause rec * next clause:

char arity;
end

Typ mu;1 Mawd

goaf.- Pi'r Vet Nuwm -var

Type

A clause record can be either of two types
= IYP CLAUSE - if it is a clause for a predicate
= TYP QUESTION - if it represents a query

Head

The head points to functor record. Consider a clause
of the form
grandfather(X,Y) :- father(X,Z),father(2z,Y).

Here, the head is 'grandfather(X,Y)' and the goals are
‘father(X,Z2)' and 'father(Z,Y)'. We note that the head can be
represented by a functor record. The clause record's head field
points to a functor record that represents the head of the

clause. '

Each of the goals can also be similarly represented by
a functor record.

Goal ptr

The goal ptr field points either to a goal tree or a
goal list.

When a clause 1s inpue; '1t may be'in anitrary
conjunctive oOF disjunctive form. These conjunctions and

1 S] i ' f a tree, the goal
disiunctions are represented in the form o , ‘
treg,, For example .-A3;B,C;D where A, B, C, and D are goals , 1s

represented as -

20

D

. R ————

patabase Structure

The dattf parser parses these goals and constructs the

goa]_tnwae. The goaltree is then linked up to the clause at the
goal_ptr location.

The goal tree is not suitable for the interpreter.
gence it 1s expanded into a disjunction of conjunctions form.
gach of the disjunctions is then attached to a seperate copy of

the clause record. Thus, the clause record after expansion will
have only a conjunctive list of goals. This list is pointed to by
the goal ptr. For example the above can be represented as

A B, C):D

i.e. a disjunction of three conjunctive
terms A,(B,C) and D. Thus three clause records are created during

expansion, one with goal list A, the second with (B,C) and the
third with D.

next_clause

The next clause field points to the next clause in the
list of clauses for a predicate.

num var

When the control reaches a clause record, 1t has to
create a stack frame for the clause, as explained earlier. The
size of the stack frame is the number of variables in the clause.
This is known from the num var field of the clause record.

Creation

The clause record 1s allocated by a call te the
function get clause record().

Example

For the clause

:—= fath X:Z) ., father(Z ;Y
grandfather(X:Y) ather() , fa (po‘)L'nfC“’ 10 the

the clause record that will be formed is - nctor netond

& fo'r afaéhcr (2..,\-")
LTyP- (lausd % @ T :]

Yﬁ | L T;otﬂ{t}' 1o

7
> var fhe fumcior
Z
i i 1 = Y~ necond f“v’
At om

—AVar fafﬁ(‘r" (x,2)
DR, [e . 1 J(..,J
am [

g?’d’nd fa“t’h

patabase Structure

5.6 TERMLIST RECORD

H

This is used to link up terms in the list
' Oof terms
describe a functor. The record is it

struct termlist rec
begin 23
char * term:

struct termlist rec * next term;
end F =k

4t eym

Tevm [Nent -

Term

| This points to the term of the functor, which can be an
integer, atom or another functor.

Nexp_term

The next term in the termlist.

Creation

Bya cal lito ‘get termlistirecord().

Example

Please look up the example for the functor record.

5.7 GOALTREE RECORD

The structure is
structrgoal tree rec
begin
char type ;
char and or ;
char * lson, *rson ;

end

Type And-or | Léon Rsomn

Type
Type is TYP GOALTREE.
And or _
It defines the type of node 1in the'goal?rfe. This is
S et 5 OR NODE or AND NODE for the . ';' and !,;' . cp&arator

22

patabase Structure

lson, rson

These point to the left subtree and right subtree of
the node. If the left son is a goal, then the field points to a
functor record, else it points to a goaltree record.

Creation

This is by'a call®te get goaltree reecord().

Example

A;B,C;D is represented by the tree

(T OR %,

Lson | 7 | OR

Fr T | AND
R T \

5.8 GOALLIST RECORD

This has the structure

StructEgoal lifstiirec
begin
FN RECORD * goal;

struct goallist rec * next goal;
e nd

Goal points to the functor record for the current goal.
Next goal is a pointer to the next goal in the list.

Creation is by a call to get_goallist record().

Example

The list of conjunctive goals A,B,C s represented as

Nt'ﬂ»%;a{ 9012-{ —
kNm_%f::h{ jaaf et D

goa(— L

patabase Structure

5.9 THE PROCEDURE TABLE

Ayl the clauses in the database are grouped into procedures
according to the name of the principal term of the head. A
procedure 1s hence a list of clauses that share a common name.
When a goql with this name is to be satisfied, a call to the
procedure is made. Thus control passes from the point of call (a
goal) to the first clause in the procedure called. To enable a
rapid transfer of control, a link is maintained from the point of
call to the procedure for the call. This is via the procptr field
of the atom record for the principal term of the goal. The link

1s created while the clause is being converted into the database
format.

Procedures are stored in the procedure table. This is a
hashed table, with hashing being done on the first character of
the procedure name. Each element of the table points to a list of
procedures that hash onto that element.

Since all the clauses in a procedure share the principal
term, they are made to share a common atom record for the
principal term. The procedure list links up to this atom record,
and the procptr field of this record points to the chain of
clauses for a procedure. Thus the ensuing structure of the
procedure table 1s as described below.

ke { 1 >

Procatom

- Clauns€ 1

Clavse Z
(5{411L56:3

A proc entry record 1is
struct procedure
begin
ATOM RECORD * proc atom;
struct procedure * next proc;

e nd

The procatom field field points to the common(shared) atom
for the procedure.

5.10 EXAMPLE

As a final example, the complete database

representation for the two clauses
grandfather(a,b). s XE
qrarvlfatrmn‘(X,Y) = father(X,Z) , father(2Z,Y).

L

is given overleal

24

\ 7 oy k. \aw

G AF 5 ku\.,éaw
\,ﬁ. : wntn%\ oN ..x_, , Al | A\RQWW\,
A
§ .m‘mkk\é\ﬂﬁw_ AU/, \&
.
U 9T L
\ \4‘
2 2 |4 QW
i1 Y wry 8 :
=T
ﬂ SQVW\
AL
I _.,P\ i
+7, P g 1
; 5,
m < o i vﬁw\qmu\(u%m WNN
2 / — & “ >snv 1)
5 2 | \V&\cw\ww“ |
...m \R@NM@&N
a v ¢ | 25snw)) i
i ,\ w0 v 23.d PILDYS \, .,Luﬁ‘.
2 25NU}? JHIN 3 | /
. % <
mwcowﬁk hk\wﬁb uQ&@ :

parser
CHAPTER SIX
THE PARSER
Introduction

The component of our implementation that took the maximum
time and effort was the parser. It effects the conversion from a
stream of tokens input by the programmer, to a database of
records sultable for answering queries efficiently.

6.1 The Grammar

In order to understand the parser structure, it is essential
to first gppreciate the grammar for Prolog. The grammar is given
in Appendix 1l. This form of the grammar is easily understandable
but needs left recursion removal and left factoring. The grammar
after these operations is presented in Appendix 1A.

There are two points to note about the grammar. One is the
pseudo ‘terminal *op'. Structures (or atomic formulae) in Prolog
are normally represented in the form atom(terml,term2,..). In
gasemofian atomic formula of arity 1 or 2, there is an option of
writing the principal term in the infix, prefix or postfix form.
For example, the atomic formula

likes(a,b)

can be represented as
a likes b.

Here, 'likes' is called an operator. An operator 1s merely a
Principal term written in the infix, prefix or postfix form
rather than in the canonical form. Since the 'arguments' for this
operator may themselves contain operators, we need to specify

the precedence and associativity of each operator. All this is
done in the 'op' declaration, and all operators must be defined

before use.

GCiven a series of op definitions, the parser is expected to
compute the 'expression tree' defined by the operators. The task
is similar to that of an expression parser in a language suchas
Pascal, except that here the set of operators is dynamic. Thus,

none of the standard parsing techniques can be used. To parse
Ssuch dynamic grammars, We have developed an ad hoc parsing

mechanism that we shall discuss later.

is that the grammar .can be

The second point to note |
y : Thet.firsktipart

partitioned quite naturally into 6 seperate parts.
parses a clause, and it handles productions 1 to 4.

DATF non terminal. ATFs and TERMs
since they both contain the 'op'
nd structures can be handled by

Another parser handles the
equire a distinct parser each,
Pseudo terminal. Finally, lists a
4 parser each.

26

- p—— s = -

- e e e ——— ——————

3'An'wly created by the clause parser. The

parser

We had initially wanted to have the entire parser in the
form of a predictive parser. This was not possible because of the
dynamic operator problem. Further, it became apparent that DATF
could be parsed quite efficiently and naturally by an operator
precedence parser. Hence, we retained predictive parsing for the

clause, list and structure parsers. The DATF parser is operator
precedence, and the ATF and TERM parsers are ad hoc mechanisms.

The clause,
predictive parsin
rows of the table,.

list and structure parsers share a global
g table and each accesses a set of predefined
' The parsing table for these parsers is given
in Appendix 2. The design strategy of the table is standard, and
we urge the reader to look up ppl84 of Reference 1 for further

detqils. The lists of First and Follow required by the table are
available in Appendix 3.

6.2 CLAUSE PARSER

The clause parser handles the following productions -

CLAUSE -> ATF C
CLAUSE -> ?- DATF.

o= N
Co=> :— DATF,

The parser is a predictive parser and uses the first two
rows of the predictive parsing table. On seeing the First of a
DATF or an ATF non-terminal, a call is made to the datf parser or
atf parser respectively.

The semantic actions of building up the database are
incorporated into the all the parsers. When each production is
detected, the associated semantic action is embedded into the
code that handles the production. For example, when

CLAUSE' —> ATENE

1s detected, a new clause
record is allocated and the atf parser is called.The atf parser
parses the head of the clause, and this is then linked up in the

clause record.

A significant problem is to develop a mechanism for passing
of parameters between parsers. For example, when the clause
Parser calls the ATF parser, the clause parser must get a pointer
to the section of the database created by the ATF parser. To
handle parameter passing in a consistent fa;hlon, we have.used
the concept of location. Whenever any parser 1S (_:alledf a pointer
t0 a location 1s passed as a parameter. Atte; th parser
COmpleteg its action, the location 1s made a pO{QLeﬂ e yhu
88ction of the database created by that parser. Coqt3quan thﬁ
tMW'GXample, when the atf parser 15 called, the location passed

£o - : the 'head' field of the clause record
it {8 the address of Ry b e,

2/

head of the clause and then 1links up the functor record it
creates for the head onto the location. In this way the head
fiald of the clause record is filled up. Using a similar
strategy, the entire database of records is built up ,with each

Emrsercontr§buting a section to it by linking up the section at
the approprlate location.

Clause Parser Algorithm

The overall algorithm followed by the clause parser is
as follows -

create a new clause record.

reset variable count and variable table for this clause.

push § and CLAUSE non terminals onto the clause parsing
stack(CPS).

switch on the top element of the CPS.
begin
case $: set the number of variables found so far in the
num var field of the clause.
enter the clause into its procedure.

default: examine the input character and switch on the
appropriate entry in the predictive parsing
table.
begin

case CLAUSE -> ATEF C:
call atf parser and link up the head.
push C on stack.

case CLAUSE -> ?- DATF. :
set clause type to TYP QUESTION.
call thevdatf parser and link up the
list of goals parsed by it .

casenC =>
nothing to do.

case C => := DAlr.
call ‘datf *parser and link up the list of

goals parsed by it.

end
end

e a ' = ts any terminal

Note that at each stage, if the parser expec

In the input, and if such a terminal is not actually found, then
’

AN error is signalled.
‘ The action performed by -
link up a clause into the procedure

'‘enter clause into procedure' is to
for the clause. The function

28

parser

checks up if the procedure for the clause already exists. If so
the clause 1s llnged up, else, a new procedure is created and the
clause is placed in it,

. As an example, we consider the database records formed when
the following clause is parsed -

grandfather(X,Y) :— father(X,Z), father (Z YY)

Typ ttause| s . Tointer 1o gouttree
o. of Y peturned by DATF

vars fMUVSCYf

Pornter 1o
thead netuvned

{og A 1f parser

Expansion

The user may specify the goals in an arbitrary disjunct
of conjuncts form. This form, when parsed, creates a goaltree
structure. For example, the set of goals

ABEE

creates the goal tree below-

N

Though the tree 1s suitable for representation of the
Programmer input, it makes the interpretation strategy difficult.
This is because the interpreter 1s based on true Horn Clauses,
Which do not allow disjunctions. To allow for ease of programmer
lnput as well as for efficient interpretation, we have resorted

to a stratagem of 'expansion'. Given a goal tree, we convert it
b6 a set of goal lists, such that the goal lists are of

Conjuncts only, and each goal list expresses one gigjunct of the
90al tree. For example, the above set of three disjuncts can be

®XDPressed as three goal 1ists i.e. A, (B,C) , and D - which are
: in conjunctive form.

29

parser

The method used to convert from the goal tree representation
to the goal list representation is outlined below.

The algorlthm'essentially operates on each node of the goal
gree, LL the node is a leaf, then an element of the goal list is
createq and returned. For a ';' node, the union of the set of
goal lists of the left and right sons is returned. For a ',

node,'the Cross product of the set of goals of the left and right
gons 1S returned.

The sets of goals are maintained on a stack. Each stack
elemepﬁjls @ Polnter to a goal list. The node processing
algorithm returns an lnteger , k, which is the number of lists in

thie seét of goal lists that it has formed. The lists themselves
are the top k elements on the stack.

The topmost level of call receives a stack of goallists.
These are attached to copies of the clause record and the clause
pecvrdctare linked up, Thus, the claluse record and goal tree is

expanded into a list of clauses with conjunctive form goal lists
as desired.

6. 3DATF PARSER

This handles the following productions -
DASEEEN=D S E AT E)

D -> epsilon
D=0 s DAEE

CATE —> GOAL, CATPF'

EATR " S=>t e CATE
CATF' -> epsilon

GOAL —>" ATE
GOAL -> SDATFt

Since the grammar is nearly identical to the grammar for
expressions, we have chosen the standard parser for expressions

l.e an operator precedence parser.

As in the clause parser, the semantic actions are embedded
in the parser itself. Corresponding to the expression tree a goal

tree of goals TisRbul LtEsup.

Incoming operands are placed in the operand stack. Whenever
an operator of priority lower than that of the operator on the

top of the operator stack appears, then the stack is popped.
Semantic actions are taken depending upon the type of operator
Popped off. This is best explained by the table below. The datf

Parser is merely the expansion of the table into C code.

30

a I NS S PR A E TR
O 4 ’ $ S
gl , | COM-REC |SEMICOLON [PUSH , "PUSH ,
REC
T
s| ; | COM-REC| PUSH ; PUSH ; PUSH ;
I
D} PUSH § PUSH § PUSH § PUSH §
E
{ COM-REC| SEMICOLON ERROR POP §
REC
: COM-REC| SEMICOLON FINISH ERROR
REC
any CALL ATF PARSER
other
symbol

NoleeRtEha &= sy il e £ £ Jassiocila Eilviewalncanls" &] 2l 1.q I
associative. -

COM-REC - create a comma record;:uaa goaltree node with
',! as the operator.

SEMICOLON REC - create a semicolon record in the goal tree.

To build a goaltree record, we get a goal tree node and set
the appropriate type. Then, the topmost two Opgrands in the
operand stack are linked as the left son and the right son.

For example, for a set of goals A, B, C - when we reach the
second ',', the operand stack has A and B with top oﬁ the
operator stack being ','. The tabledtel I's' s that the actien to

be taken is to create a comma record. This is done and A and B
are linked up as its sons as shown-

gL

parser

Then, this is placed o
» n th
jtacks C is pushed on top of this. When '.' rs cesn oborand

| : .' 1s seen, another
comma record 1s created with (A,B) and C as its sons i :
us the desired data representati’on = BT SE0ives

/ \,C
iR

current clause,.

which is linked to the goal field of the

6.4 ATF AND TERM PARSERS

These parsers handle the following productions -

AES=>5 S STRUCTURE

ATE =-> LIST
ATEs=>"TERM 'op! TERM
ATLER—>ETERMaYop:
AlLES=>8teopY%Y TERM

TERM -> STRUCTURE

EERMS => RS TS TERM!

TERM -> 'OP' TERM TERM'
TERM -> integer TERM'
TERM -> variable TERM'
TERM -> atom TERM'

TERM -> (TERM) TERM'

TERM' -> 'op' TERM TERM'
TERM' -> 'op' TERM'
TERM' -> epsilon

These productions incorporate a TERM' nonterminal which is
used to remove left recursion of the form

TERM -> TERM op TERM.

The problem with the above prpductions, as has already ?een
€Xplained, is that the associativity and precedence of the fﬂf
Pseudo-terminal can be dynamically changed. Hence the expression
tree formed by using the 'op' term depends upon the current
Status of the op declarations. We came to the conclusion that an
Ordinary parsing strategy could not handle this problem.Hence,we

32

T S e e e T T = 1

T

=T

dmﬂdeq to i1mplement an ad ho c
roductions.

p

parsing mechanism for these

We place three restrictions -

Once an operator is defined,
1n 1ts canonical form.

all operators with the same
share the same specification.

then it cannot be used

precedence level must

ey Specification is not allowed.

These conditions are essential to allow us to parse the
expressions unamblguously.

The parsing strategy is to maintain two stacks - an
operator stack and an operand stack.

- Variables,

Structures and atoms not declared as
operators are pushed onto the operand stack.

Those atoms which are defined as operators are pushed
onit o¥the "operator 'stack it the'y ¥ have ™ higher
precedence than the top element of the operator
stack. If not, a tree node with the top element of
the operator stack as its operator and with the top 1
O 2" elements of the operand stack as 1ts
son(s)(depending on the arity of the operator) is
created ./* note that in Prolog, an operator with
higher precedence has lower priority */

The specification of the operator is then checked. If it has
gnExXE-vpbe on the left or right of the operator, then that

SUbtree 1i1s

checked for operators of equal precedence. For

example, for a specification of xfy, the left subtree is checked
for an operator of the same precedence.

The outline of the algorithm for the atf and term parsers is

given below.

t = current token.
switch on t.

begin

B e's : /* note that & is the cons symbol for list

case

case
case

case

of an element in t

representation */
call the list parser

he follow of ATF or TERM
go to return code.

gtring ¢

cali the list parser.

push it on t he operator stack.

} 3

gage) ¢ /™) is not only in the production for TERM,

i1t 1s also in the follow of TERM. In any
CEEE o

POop the operator stack until the operator on top
1s elther (or S§.

If the stack has $, then the) must have been in
the follow of term, so we leave) as the current
token to be handled by the upper layer and goto
LetUrn code,

It (is found on stack then it is popped, the

lnput token is consumed, and the next token is
called for.

case atom :

If it is an operator - it is pushed on stack
depending upon its precedence, as explained above.

If 1t the first term in a structure, the structure
parser is called.

PESIE 1S "a simple fatom, lthishplshedionythie
operand stack.

case lnteger :
case varilable :

It is pushed onto the operand stack.
end

FeBUrn code .
plo P tiheloperaltor " StEackiSeEeatilngatrec nodes as
necessary until the $ operator is reached.

return.

Note that in order to determine that an atom is indeed the
first term of a structure, it is necessary for us to see whether

the token immediately following the atom is a '('. This requires
a look ahead of one. To provide this lookahead,we do buf fering of
the token stream. At any given time we keep 1n t he puffer the
current token as well as the next token that was read 1in. ?o do!a
lookahead, all we do is to look at the next token which is

already present in the buf fer.

As an example of the above parsing strategy, consider the
eXpression

D)t d % e

~where we have already defined + to have
Precedence 100 and specification.xfy, and % to have prgcedince
150 and specification yfx. The sequence of stack states is shown

34

parser

+ + OA o/
d &
Cl.(b;C) CL(b,C.) Q_:i;C) q'(b"gl)_}
e + //%K\l
N
Gk(b}c> Ol C‘-(b}‘:) A a(bc/) \d_

Note Chatsthe' code for the term and atf¥pdrcersiiis
identical. Why 1s this so ? The major portion of the code in the
term parser deals with the parsing of structures in the
expression form. Since atfs are syntactically identical to
structures, the same code is also needed by the atf parser. Thus
the two parsers are identical.

The major difference between the two parsers is that whereas
an atf parser must return a functor record, a term parser may
return a variable, atom or functor value.

Also note that the algorithm above resembles the operator
precedence parsing algorithm. The difference lies in the fact
that in the operator precedence parser, the operators and
operands can be easily differentiated, whereas in the existing
SHitation, this 1s not trivially possibleﬂ Further, in ahn
operator precedence grammatc, we can statlcallycregte'the
operator precedence table, whereas here, one must maintailn a

dynamically varying precedence table.

39

;.5 STRUCTURE PARSER

—

The structure parser handles the following productions -
STRUCTURE -> atom (STERMLIST)

STERMLIST -> TERM S
STERMLIST -> epsilon

S -> , STERMLIST
S => epsilon

Thgse productions actually have some redundancy .The above
productions are equivalent to

STERMLIST -> TERM , STERMLIST
STERMLIST -> epsilon

We had initially planned to disallow structures with null
termlists. Hence, S was introduced to ensure that the termlist
could never be null. However, we later found they we needed a
null termlist in case of calls to predefined predicates with no
parameters. Hence, STERMLIST -> null was introduced, leading to
a redundancy. Since removal of the redundancy would require a
major modification in our code, we have avoided this change. In
any case, the grammar is still correct.

The structure parser is a predictive parser and 1t uses
rows 3 and 4 of the parser table. The standard predictive parsing
scheme is adhered to. The outline of the algorithm for the parser

1s as follows -

Initialize stack to) at?m
STERMLIST
)
$

-

create a functor record for the structure.

switch on top of stack.

begin
gage S : return.
case (
2222).:lgmnove the corresponding token from the input
’ L]
stream .

case atom
creat
principal ter

e an atom record and place it as the
m of the functor.

36

default :

look at the current input token and switch onthe
predictive parsing table.

begin

case STERMLIST ~> TERM S :

L

parse the term and link it to the current
termlist record.

case STERMLIST -> epsilon :

end the termlist chain.

case S ->» , STERMLIST :

get a new termlist record and link it up to
the existing termlist chain.

case S -> epsilon :

terminate the termlist chain.
end

end

As an example, the data structure formed for the input
structure 'grandfather(a,b)' will be -

I — == —— _—

Fn =

>
-

\;Aéona /
‘ No) :
tom 7 7 Adom I
‘GrandFather \G
6.6 LIST PARSER b

The list parser handles the following productions -

LIST -> string
LIST -> & (TERM , LIST)
LIST => [L

=]
=> TERM M

L

L

ME=> § N

M -> , LTERMLIST
M ->]

N

N

-> variable
=> [LIST

LTERMLIST -> TERM LT

37

E pa rser

T -> s LTERMLIST
T -> epsilon

The list parser is a predictive parser and follows the

standafd, pr.edictiv:e parsing algorithm. It uses rows 5 to 10 of
. pe predictive parsing table.

The parser has to deal with lists that can be input in a
sariety of forms. These are

| B (NTERM |, LIST) e.g &(4, &(5, &l mulmy
; 2- [TERM, TERM ...] g g b s e

? 3= [TERM § LIST] e.qg [4Y[59[64011]]

| 4- string e.g "456"

SN TERM " variable] e.qg [:4-9 X]

Though externally different, they all form a chain of
. functor records with .name & and arity 2. For example, all of the
above are represented as -

Fn| 2
‘ Int] 4
Atom / |
| " % 'Wy
Fn| 2

g

a8
AS N
%

: ‘b | Fn] Z2 |

Note "456" 1s an exception toO thfte above. ii:[t will be stored
BUENRY > 5 and 6 as integers but 1D their ASCII from.

The outline of the algorithm used for parsing is given
below =

initialize the stack tokféff-

switch on the top of stack.

38

begin
case $S: return.

case) :
case] : remove this token f

rom the]
the next token. input stream and get

default

switch on the predicti '
kg p ve parsing table.

case LIST -> string :

make a list of functor records as described

above, yith each character in the string being
stored 1n ASCII form.

easeSLIST => & (| TERM ', LIST)%
remove & from the input stream.

parse the term by calling the term parser.
link up the term.

remove (from the input stream.
SteackK) rand LIEST,

case LIST => [L:
remove [and stack L.

case L ->]
remove J].
terminate current list of functor records.

case L => TERM M : |
parse the term and link 1t up.
stack M.

case M => 1 N : |
remove 9 from 1nput stream.

stack N.

case M =2, LTERMLETST
remove , from the input stream.

& tack LTERMLIST,

case M =>] : '
terminate current list of functor records.

case N -> variable : ; _
link up the variable 1n the current list of

variable records.

case N -> LIST
stack LIST.

case LTERMLIST -> TERM LT :
parse and 1ink up the term.

39

gfj case LT -> epsilon

T
= r

sSEadck LT.

terminate current list of functor records.

40

CHAPTER SEVEN

UNIFICATION

we first discuss the structure sharing technique used to
-epreseﬂt values of variables build up during unification. This
gfollowed by an explanation of the unification algorithm

1 STRUCTURE SHARING

The key problem solved by structure sharing is how to
represent an instance of a term occuring in the original source
brogram. This instance 1s built up during unification. We call
the original term a source term and the new instance a

nstructed term. Structure sharing represents the constructed
term by a palr :

(source term, frame)

jhere the frame is a vector of constructed terms representing the
flllesof the variables 1n the source term. The relative
osition of a variable's value within the frame is given by 1its
ffset number. A variable that is unbound 1is given the special
lalue undefined. All bound variables have the value of the term

they are bound to. ﬁ{wdiﬂj gouwrce
? 2 Fevr
P : h ryame
A or example, given the source : @ _}uﬂdefind
tree(a, X, Y). T’V‘fe, (a"“'y s csMLb I
geee(A, B, C) | S ? ’4{
he Constructed term | _’[ﬁ M yniﬁfiﬂdd

e85 " tree(A, b, C), [1)=

Yabs €l
S X > %aree (A/B,O

sShOWn in figure 7.1(a).

ﬁnslf the source term 1s a
'ramtant; or undefined, then the ;
S POinter becomes meaningless,

reg:rthere are no variables to be

€nced,

Figure 7.1(a)

41

X being bound to vy,
are possible

4

| f_,ﬂe (o ,x,y-)

the constructed term of
term need not be stored,

and Y to the atom 'c!.

shown below

tree(a,

Xy

¢ (apx,

the variable
Consider the c

tree(a, X, Yy),

bin
e
Py
e L b)

- In 7.1(¢) the constructed term for X consists simply of a
polnter to the cell of the variable to which it is bound.
seurce term only contains an

variable.

Thus both the fields of a constructed term are important
only 1if the source term
genstructed term 1s called a molecule.
important if the source term is a variable.
is called a reference in this case.
to be a constant or undefined,

These concepts should be clear from the representation of

tree(X,

Figure

a simplification is possi-
int to the cell containing
bound to, and the source

onstructed term

Two representations

Tree Ca,vrd)

indication that X istbound, tora

In such a case the
Only the frame field is
The constructed term
If the source term happens
the frame field is redundant.

i's "a skeleton.

YT
BN 56’
— var

— 4 ree (“'4_33\5)

, ‘--J"* - » (N de.‘f

J'Unification

| : bles j

e uired o . ln thos

ﬁﬁvieio pe crnelaytefc(i)r tIhe varlable cell: as:‘gl:goggbieN:wofst:er:ge

constructed terms usi G contrast if we were to represent tﬂs

terms, the cost will QE the same data structures as for eoutc:

the skeleton, since a ¢ broportional to the number of terms in
reated. For exampl Opy of the original terms will have to be

¢ ple, to represent the constructed term |

tree(a, X, tree(X, DX SRS

we will have to create afresh the structure :

j [11’1./11:':, 507‘ Avee

l

7L

!

TL

15"

v

T L 7 71’2 . 40)’ %7:'{9

Figure 7.1(e)

The only disadvantage of structure sharing to the other
; representationis that future reference to the constructed terms
1 is slowed down. However, this loss of speed is quite small and
amply repaid by the savings of space and the speed of creating

and discarding new data structures.

e constructed term representing t he
rored in a VARIABLE CELL consisting of

|

iBbinding ..s & pointer to the source term
1/cells in which the values

2) frame X the source term may be found.

of the variables OC

s for all the variables 1n a clause are

ame on a variable stack. Relative posi-
s given by 1its of £set.

The variable cell

placed together in a fr ===
tion of a variable within the frame

he value a variable is bound to and the

The mapping betweel t |
Contents of the variable cell¥1a3

43

mﬁflcation
e
value of variable bi -
v inding frame
def i
un 1ned ti a location containing NA
the code for undefined
tom e,
?nteger Lo the relevant atom. NA
e Lo the relgvant integer. NA
to a location containing index of the
the code for variable relevant
ypbe. variable cell
skeleton Lo relevant skeleton. base of the
RultIsS] 1 st NULL rel;zant -

At the time of creation all the variable cells in a frame

twve.undefined values. It is only through unification that
bindings are made.

Occur Check An interesting situation develops if a variable
gelesmbound to a skeleton containing that very variable. @ For
example consider the binding of Y in the following figure :

£

7
I
W

A CXIY)
z

" '

Eigurel It)
The constructed term represented by Y 1S

(202, (2, ses v)

The inadvertant creationtoflsuch

A check at the time of binding a
However this check will have
direct circularity. Such a

e hN's an infinite term.
infinite terms is undesirable.
Variable may be done to avoid thijs.'
L0 take care of both direct and 10
Check is called occur check.

' ' 1 Prolog
seldom arise 10 norma '
termsthe user may well be wanting to

However, infinite

f do . . " [
EZﬁgﬁEsé i ‘E?i?t;hfgrm a’s 2 valid data object. Gansidaring
ct an in

Egis’and the fact that the

heck is LOO computation intensive,
e

eck.
have not implemented t he occur ch

44

© unified may be an atom, an

Unify succeeds if the two
Otherwise it fails.

BX . Elver Bl
success

fi¥ee river rdvera
failure

X4 river 3
failure

Ex. 10 10
success

Ex. river | X

Here the unifier needs some more inf?rmation pefore' 1 & can
decide whether or not the atom 'river' can hun;f;ydylth ftr;(e
Variable 'X'. Specifically'it needs to.know trf 1n.1g% o 1i
and for that it needs to know the location of the variable ce

for X on the variable stack.

efined (as a side effect X will
or is bound to the atom 'river',
satisfies any of these criteria.
ils and the binding of X 1s not

Success results if X is und
9t bound to the atom 'river'),
ot is bound to a variable W'thh
In all other cases unification fa
affected.
ss 1s recursive and the chain of

r Mg - inicion Cﬁfgiucizeds to be traversed before one can
€ferenc h arliable I
esiitrom the V o ;

l :unification

.esult is the term to Which et la e

¥ t variable i1s bound.

example cpnsider t he bindj_n

ffﬁgwﬂ a]_on'gs-‘,].de.' The Eesul ¢ g?
gereferer.101ng X 1S the vVariable g
¢ location 4. If Z wasg boyng to

) ligh St T
e atom ‘river € result woy
% e been the atom 'riyer:', 5

v/ —— av

e e A

D 0 /4R

var. ¢4ack

FPlgure 7 (Sams)

l'thA:ncSJ}E?l:]l-fd feerriletahre’ Wheni-:aver we attempt to unify a ‘variable
i result 1is €Xactly the same as if the
;der?ferenced value Oof the variable was used. Dereferencing of a
variable bbefoc;e unblff:l.catlon may be done in the unify procedure,
or it may be done before calling unify. The latte '

guarantee that a variable sent t { : e

! . ' ; O unify as an argument must be
[undeflneq, as otherwise its binding would have been passed. For
example 1f the variable X,

.€ : bound as in the above figure, were to
be unified with the atonm ‘river', unify would bel called with

'termlt = 'riyer' anditerm?2 = variable at location 4. As a result
Loflunlflcatlon the variable at location 4 will get bound to atom
fraver'. In case Z had been bound to 'river' in the above

figure, the second argument to unify would also have been
'tiver'.

We chose the latter strategy in our impleméntation.
g

|
In all further examples we assume that terms are fully

dereferenced before calling unify.

Ex, var at location 4 varsataill

success., A reference from var stack[ll] to var_stack[4] 1is
feated as a side effect.
L 14! —2Wrav

be The binding could as well have
aien from locn 4 to 11. However we
:foways prefer downward references

elcktra(:king. This will be made - A
: g in chapter 8. var stack.
| CPigupe 7. 2004

nd to a variable, the binding

When a variable cell is bou t variable record in the

4y 8T does not point to the relevan ation which indicates
e It just points to The frame field of the

me.. Variable is being referenced. simdlarly; L eS8

bout the binding.

46

AT

.bar BEllsons of efficient _-)uﬂdﬁftlﬂed

iable 1s one of the
Varla i Adr¥gdumentsg Of i 3
the,engt alzlable' BCCOEds " AR indicnltf,Y: we need not refer to
Var1ab e, Ng with the in ation that the term is a

; d .
jable stack, is all thap ;. ©X of the variableflst cel lkon the

gar Fequired,
EX o [] 'Civer!
failure.
s variable at 3 []
cess.]
success The variable cell at locn 3 is bound to [].
EX. river(ganges,lBOO).

river(ganges, 1300).

Unification of compound terms proceeds as follows

Match the Pprincipal terms.
Match the arities.
Unify each pair of arguments.

If each of the above succeeds, the unification of the
compound terms succeeds.

. IQ this example.both terms have the same principal term
(‘river'), the same arity (2), and their argument pairs ((ganges,
ganges), (1300, 1300)) unify. Hence success results.

EX. river(ganges, 1300). ganges
failure. Terms of different types don't unify.
Ex. river(ganges, 1300). : river(ganges).
failure. arities are different.
Ex. river(ganges, 1300). river(nile, 1300). .
failure. The argument pair (ganges, nile) does not unify.
Ex. e, Y) river(ganges, 1300).

unifier must know the bindings of the
he functor. For this purpose the index
for the clause in which the term 'river(

X, Y)', and hence the variables X and Y, appear is communicated
t‘i)u.nj,fyy as an argument. The relevant variable cells can then be

located by adding the offsets to the frame base.

lilere. again the
Variables appearing 1n t
Of the base of the frame

i +ies match. Unification of the
e ar;%?igs of the variables. For the
1 of X is located, dereferenced,
renced value and the atom
lar process is followed for

The principal terms 4 :
4fgument gairs gepends on the b1
.flrst pair of arguments, }:he cel :
$Md unify called with 1ts Gepe ==
Bahdes!, 1f this succeeds, a simd

&

477

If th
gcweeds' Sehalso Succeeds, unification

as should be clear bY now

r Unific : ,
named terml, framel, term2 ang fran?;:;on Ezglrlnlfesg irgumzents,
<. an erm2 are

. rs to the terms >
cﬂntefs. SR o BEa n s £ :
polinter depends on thenlfled-fNEElnterpretationcﬂfthe

frame gives the j
perfy 1ndex o
contaning clause. For a yarjgp L the base of Ehelframe ol i

the variable's cell,

meaningless. This inf : : . i
rable ¢ marized in the following

Nature of term

Arguments to unify

atom | i
term Ptr to atom in database.

frame : not applicable.

inCeger term : ptr to integer in database:
frame «: not applicable:

skeleton term : ptr 'to functor 1n databases
frame: index of base of frame for
the containing clause.

variable term ¢ ptr. to a dummy @ Beleaticon
indicating that the term is a

variable.
frame : index of wvariable's@cell "on

the variable stack.

AL R BT o term : NULL. .
frame not applicable.

We will now give the unification algorithm and then discuss
4 detailed example.

WNify(terml, framel, termzZ, frame2)

: d

The following global data ;icﬁcgigiznt is a variable cell.
Var_stack[] U location uptil where the variable
= ¢_cop i, stack 1s automatically compressed
when backtracking attempts to undo

the effects of this unification.
: re ferences to qaylab%e cells bound
trail stack(] during this unification are placed
= og this stack unless they will be

- moved due ¢to
pically: ES i _
autgizssion of the variable stack on
com

back tracking.

48

8 g ; g On
i fflcatl

1 pull list(termi) OR
isatom(terml) op
isinteger(termy) OR
framel EQ frame?

return SUCCESS ,;

i £

: 1f the Ewo terms are
bei:ﬁ?lcal va;iables or functors
if(isatom(Corml) €Leérenced in the same frame Ld

return(terml -> name EQ teréztfimz)9
if(isinteger(terml) aNp i name)
return(terml -> yalye E® ta

-~

Gl

D
(@]

D

N
ﬁ-
(D
s
=
(N0

rm2 -> value)

if(isfunctor(terml)
begin

1f(terml -> arity NOT

e tutn EATLURE - -

F

if(terml -> Principal term -3 name

NOT_EQ term2 -> principal =
return FAILURE : . pa.l termi= Snediicy

B = 1 to terml -> A LHt)

AND isfunctor(term2as)a)

Q term2 -> arity

 —

begin
B REEENl > argument[i] ; £2 = term2 => argument[i]
frl = framel ; fr2 = frame? s
Ra@Nlisvariable(t1))
begin
frl = framel + tl1 -> offset :
frl = dereference(frl) ;
@I sundefined(frl.))
el ="var ; /* dummy variablews/
else
begin
t1 = var stack[frl]l.binding ;
frl = var stack[frl].frame ;
end
end

Similarly dereference the second term E208:
If(NOT unify(tl, frl, t2, EE2)

return FAILURE ; ‘ o
x nify next argument pair */
end / golggst? u }; vYou come here if the two functors
gacn SUCC ' have the same name and arity, and

if all the argument pairs unify.

o It 5

are functor
end /* of the case when both terms

if('isvariable(terml) AND isvariable(term2))

be?%? - 5) /* create a downward reference */
4 framel > frame

reference(framel,
e el) i
reference(frame2, fram

& Leturn SUCCESS ;
Eaee *nd

frame2) i

49

. ¢ication | ke

jevariable(terml)) /« onl

pind(framel, term2, frame?)Y.tigﬁirissa variable */
UCCESS

i £(

j lable(term2 ;
.f(lsvarla)) /* e .
i crame2, term, f‘-’Eftrm-’-;'lnt:)LY tii?ir;sszc‘é;;iable i
S

emi/* ornunify */

(t2, fr2) In case this variabStaCk 0 the consitrvectis

. le cell won't be automaticall
removed on backtracklng (frl > R
is placed on the trail stack, °ld_vs_top), a reference to it

The unification

algorithm for tw
' O derefer
ammarlzed as : enced terms can be

b

i) Iélgfne of" the terms_is a variable, success occurs 1if
o) terms are null lists,equal atoms, equal integers,or
functors with same name, arity, and unifiable arguments.

2) If only one of the terms is a variable, it gets bound to
the other term. Success is ensured.

3) If both terms are variables, the more senior reference
is assigned to the more junior reference. By seniority
we mean the position on the variable stack - the lower
one is more senior. Success 1s ensured.

Whenever a cell is bound to a value, it 1s usually necessary
to remember the binding so that it can be undone on subsequent
backtracking. The exception is when the cell will.in any case be
discarded on backtracking. This condition can easily be detected
by the fact that the cell's address will be greater than Fhe
value of vs old top, the base of the frame for the clause being
unified with the parent goal. If this condition is not met, the

assignment is remembered by pushing the address of the cell

con i 2ck. It is here that the referencing of
Oncerned on the trall.EﬂleS is helpful. This scheme reduces the

saved on the trail stack,'since t he
11 beind removed automatlcayly are
cell. As an added benef;t, the
beyond one or two levels 1f this

Chances of the junior cell
Jreater than that of the senlot
Chain of references seldom grows

Sctheme is followed.

A
i FULL EXAMPLE OF UNIFICATION

Consider the terms
1) s(np(john), VP! (likes), np(mary)) J-
2) s(np(N), V).

3) SNT, vp(v, N2)) -

B o Co%iton in (he oirg Rumbsced 0T 2

The frames for the

TR u'ndef
X g > 4unui€f 5: 3 L—*—tiﬂﬁa“Zf
N, — undef 4N, B umd*—'f
v — uwdef 3: A7 2. undéf
Ny —> undef 2 e — uﬂﬁ/‘—’f
A/ > wndef) e k___vf(‘v(’[.ikas‘lnp
N HAESTErY undef @0 - e joﬁ% (mary)
yo v € 'édhqa(17%f
W},aé(f Stack
=uéﬁ?l) Before unification (2)uﬁggigai?;n

(4) After 3fd

3) After an unification
£ unification

pigure 7.2(C)

54

: # X —> u%d 4 f c: X — S (N1, 'V'P (V; N2).
4 . P {7y b AiNa TR ('_””““”’3
. b [Cﬁp’fff-f) o A Vv C’LL')kef)
: -'Nj L Vl»]?UV) L;(z: Ny e 7?-;7(([\/)
o ke L2l a4 | rp ARG
s T PnP (vavy) i adannd b
; N - john o! N JD“LYL

e A -

;ﬁf;us.consider 4 Sequence of three un
JNIFICATION

with
r V), at frame 0.

np(mary) y s at'frame 0.

RS L=
. C : e
L btk = R
iy '] PR

s(np(N)

ey s
.','...' g
=

o
v =2 " LR vy
3 T e L R RS
et ey B " i
"0 AR .

. [
et b =

. both are functors

- - Principal termg p
- arities mateh s

AT N
R

)
A
o
k
VN
3
r
b

4
i
-~
i

Ol
L -
=~
¥l »
,r"'
A
il e)
et
" o

- unify(np(john s
. both are functérs' b Gle

S DL Incipal terms mat
- arities match =

l-..l.l.._-

e
1

=

o PRSEAS Y & Al
L -:‘.I -,i '1‘

E

- unify(john, 0, var, 0.1

- variable cell at 0 i]
; b s bound to atom 'john!

. sSucceeds

A

] 1'{" '_' :
ol

i e B

s s N

. unifyﬁ_vp(v{likes), np(mary)), 0, var, 1)
. bind variable cell at 1 to the skeleton

vp(v(likes), np(mary)), frame to 0
. succeeds

: succeeds

- & _".‘-'-‘. i
- -'.-._.‘.‘ o &
= _'T o

AJﬁiﬂi ~ The state of the variable stack after this unification is
{Fﬁﬁﬁﬂﬂ Nt iglure 7.2(¢) 2.

AT

s(np(N), V), at frame 0
with
s(N1, vp(V, N2)), at frame 2

. both are functors
principal terms match

. arities match

B unift np(N), 0, var, 2)
b{éd Bariabie cell at 2 to the skeleton np(N),

frame to O
. Ssucceeds

unify(vp(v(likes), np(macy)), 0, vp(V, N2), 2)

both are functors

: principal terms match
. arities match
T
i Vidihes OIIYB;; 3 to the functor v(likes),

bind variable ce
frame to 0
. 8ucceeds

.

. unigi(dnp(mary), 0) var, 4
. Nnd varia _ |
FEANE. & 0ble Cadlvat 4 ¢ the functor np(mary),
« Succeeds
. Succeeds
.« Succeeds

T;‘leBState after this Unification is shown figure
parc) 3

f %ﬁ IRD UNIFICATION
SRERES | S(N].p Vp(Vr N2))l‘

with
var, at frame 5

at Crame?

. bind variable cell at 5 with the functor available in
the second argument, frame to 2
« Succeeds

Bigure 7. 2(c) 4.

At any stage the value of a variable can be r.:ead of f the
variable stack by following the binding and frame pointers. For
ie;:xarnple the wvalue of X after the 3rd unification is :

S (\ , vp(1 : ! e

np (l) v(likes) np(mary)

contfolling Execution lush

CHAPTER EIGHT

CONTROLLING EXECUTION

: LUSH

R e S —

The aim of any Prolog con
ig done through procedure iny

some goallist, say GL, is'unified with the head of a clause, say

it on succesful eXxecution of the body, and continue with the next
goal on .the goallist GL. This situation is exactly similarstoma
conventional lc-'lnguage and is handled similarly, by a control
itaci.' The diference lies in the non=determinancysc e
execution of the goals. We may try to find an alternative
solution for the same goal G later, due to failure of a
subsequent goal. This is known as backtracking. Due to
backtracking the status for G must remain on the control stack
even after 1ts successful execution. Backtracking may cause us
IOREeEUEnN to this status to try out other alternatives. Only
after all the alternatives have been obtained (through repeated
backtracking) can the status be removed from the control stack.

When Prolog backtracks to a procedure, it needs to undo the
effects of the last unification. This involves unbinding any

variables that got bound during that unifigatign. The state
saved must therefore include some backtracking information to

énable the system to do so.

rises the

: ‘be the information that comp |
We will now descril But first

state of the Prolog system during execution of a goal.
e clarify the terminology used.

executing (attempting Fo satisﬁy)
i CurrentlyThe clause in which it 1s contained

@s called the current goal.
1S called the current clause.

: the current goal is being

in which a match Lor .

fo Th'e proF:edure s been invoked Dby the current goal The
s said to have which was invoked by some

C . ; : .
gg;Ti'EHETanl 11tswe}}ifcf]{1j_ensvoked the current clause 1S called the
. e goa .
frent, or, activating goa

€ current goal.

: auses
For example, consider the cl

likes(mary, john)-

likes(mary;, charl?s) -

likes(jane, mary B o5 (. MY "
likes(mary, X) @~

) 4 likes(Yl &) .

54

: ca-ntfolling Execution : 1ygp

procedure fc)r 7 ' ' :
ch as tl’.‘y to SatiSf llllie's -l This
y a ket ugoail;

?= likes(Who, mary)

When this goal unifie -
- S aeh iy .
jnvoke thlls clgusg, and to be the palzees(mary, X5)fSitsrsEeaidRco
5 any goa.s within it, Nt of this clause, as also

STATE OF THE PROLOG SYSTEM

3.1 STATE

The state associated wi
L M l : [}
the following fields of inforrﬁgttizgr? MR e

IMEGOALLIST,

% :
e conptoilr?lf:]é'to 1.:he currept goal and its continuation.

A lon 1s the list of goals to be executed
aftter the current goal is satisfied.

2) FRAME1
glves the base of the frame on the variable stack
asso_c1ated with the current clause. The frame contains
variable cglls for each variable in the current clause,
and hence in the current goal. ‘

3) PARENT
Pointer to the parent environment on the control
stack. Execution must return to the parent goal's

continuation when the current clause succeeds.

e CL.IST | '
A pointer to the currently invoked clause. Since
a clause record contalns a next clause pointer, clist

effe jvel oints to the 1ist of clauses reméining.hq
e ot When saved on stack, clist would

the invoked procedure. '
point to thepclause last matched with the current goal.
ause the system tO search"far

Backtracking would C ‘
Ml native solutions starting from the clause

aliist —7 next_clause.

5) FRAME2 n the variable stack
: base of the frame O ;

Gives thed ilause (one pointed to by clist). At

[the invoke the variable stack is cut back till

time of backtracklﬂg% frame2 is also made available to
ftame2. The value ~edicates t hrough vs_old_top, so

unifier and prgdeflned pr ed ates le below L9 _FEne
et any bindings ~=
remembered oOnN t he trail.

6) TRAIL POINTER . gtack as it stood BeEaxs
- Gives tﬁé £ with the currently

unification of

he tral
rrent goal

op of C
t he cu

un

T ol
R e e TR
l e
5 _——ﬁ

rolling Execution .

cont lush

invoked clause heag A
m

above trail pointer are
feurrent unIEiCation

7) BACKTRACK ENV

t back :
. This i track if and when the

b S the @ost recent environment,
PONeé, for which the

was not the only rep : | clause activated
goal. Y Alning alternative for the activating
The last four fields ;
B racking. Of the state are required only for

8.2 THE LUSH ALGORITHM

| | O this system is discussed by Van
Emden (7). We first discuss the algorithm as implemented. An

example is then given remove any doubts that may linger on after
reading the algorithm.

The current environment of the Prolog system is maintained
In the variables jJust discussed. Further, for each goal that
inifies with a clause head, the environment before unification is
Stored in a control record on the control stack, where it remains
for later use during a successful return or backtracking. This
control record is removed only when the goal fails because there
1S no other clause to match it.

The data structures used are :

... each element has the seven fields
i stackl! required to store the state of the
system

goallist, framel,
Parent, clist,
frame2, trail ptr,

en fields of the current
backtrack env the sev

state
top of control stack

env e o @
var stack|] of variable stack
\ 5 top S;%pesvs topforshallow .
% VS_old_top "** Thacktracking, is mostly identical

o frame2

trail stack(] of trail stack

ts tdE s top“ & top for shallow
ts 0ld to T) fFinﬂ
— RS p l)d(’:kl,f.tl(a . .

50

Bro11ing Execution : 1ygp S e —

éramez = vs_old top = yg LOp = g ¥
¢g old_top = ts_top = 0 7 ’

env = O !
packtrack . env = parent = -3

frame on v : (gl &
create a ariable s |
¢m1115t = query -=> goallist;ta;Ck for query -> numvar variables;

- *
NEW CLAUSE : /™ eXxecute goallist in a

framel = frame2 ; parent = eny - 1 new clause */

®
[4

NEW GOAL : /™ A new goal in the
iT(goallist EQ NULL) o
goto SUCCEED ;

goal = goallist -> goal :
clist = %oay => principa}_term_ptr =>" procphbt;
/ flrsl-'_ Clause in the procedure for the goal's
predicate, */

rrent goallliisERe/

BACKTRACK POINT : /* set shallow backtracking points */
FEame2 = vs old top = vs top ;
B Neldiitop = ts top ;

ALTERNATIVE /* Try the next alternative clause in the
invoked procedure */
RGN st EO NULL)
gotEe FALL ; |
create a frame for clist -> numvar variables ;
N iEy(clist -> head, frame2, goal, framel))
begin 1l EQ NULL)
iM(elist -> next clause . | |
i éetemnninate execution : no poilnt 1n backtracking to

. 'n:k
Raagiocn 293 k between ts old _top and ts top by

' rail stac | - » 5
ig;ggfn; references toO variables above frame2 of the

backtrack environment ;

else * to saved environment */
- =1 '3 /T set
Backtrack env = env
*
elsznd/* fail to unify : shallow backtrack */
begin . gy .
MEREOD = €S Old—tOpdé dur ing fauiled unification, use

e indings ma old tp ;
52?255;222 ongtrail stack above LS 028 _

! : *
ts tp = tS old_tp !/ t clause i /* next alternative */

Biiar = clist = ?ex
goto ALTERNATIVE ;
end

\ T o)]-.' .
code continues Of next paaqge

‘:f&@lling EXECUtiOH . lUSh

- Eﬁif(backtrack env < o)

report failure of &
else | el return

»
’

:
a
.

. - on .
enve= backtrack Y .ment ;

v?_top = frame2; '
clear trail apo .
tmcktrackqm“;; g < trall_Ptr retrieved from the
@ISt = cligt -3 pne
Xt :
goto BACKTRACK POTINT b
end - =F '

s *
BUcCESS /* parent goal succeeds

continuation *
if(parent >= 0) AR

begin

restore parent envj
vironment' : :
parent s framel, goallist and

next satisfy its

gealilist = goallist -> next goal
goto NEW GOAL Ik

end
else
begin
print variables in query ;
1f(more solutions desired)
goto EALL ;
else
mevurn. 3

.
!
L
[

end

8.3 DISCUSSION OF THE ALGORITHM

Blilsh™1s written as a finite state machine with each state

being represented by a label.
y clearing all stacks, creating a

: ' oallist to be the
fra and setting the query's ¢ ‘
mmTfiiirﬁﬁhi %iif%;lause to be satisfied. Since a failure of

ECSS=0f this goallist represents a fai%uizl?g 32532z5<0511??h'
boU?parent and backtraCk_?nV are set to 1n

el nitializes itself b

lause, the system assumes
t unified with the parent
and the clause' goallist

to satisfy a Bew &
lause was Jus
t was saved,

~ When attempting
that the head of this new C
0al, the parent environmen
Made th nt goallist. |
; E : the next goal 1n
the interpreter

: a new clause,
;; tch the goal. For

: : SS , .
i After preparing to press At this pointy

3 S . |
00allist must be Selicglauses ~hich may ma

i

é
Ny
i

g e e e R T e S T

contrOIIi"g Execution : lush

append([1:2]: [3]r X)

jush finds the clauses which describe 'append'.

Oonce these glauses have been found, lush will attempt to
unify the goal with the head of each clause until a unification
succeeds. There are several things to note at this point. Since
the unification algorithm will try to match the current goal with
the head of the clause, the system must have pointers to two

frames : the frame for the goal, framel and the frame for the
head, frame2.

If gnlflcation fails lush will try to match the next clause
in the list. When this happens, the environment must reset to
its state befqre the failed unification began. When this 1is done,
the alternﬁtlve clause is attempted. This is called shallow
packtracking. The control stack is not affected, since the

Tnfgrmation required for shallow backtracking is stored in the
variables old sp and old tp.

If unification on all the clauses in a given procedure fails
then the system must perform deep backtracking. This is done by
popping the backtrack environment from the control stack and

using it.to restore the environment of an earlier state in the
computation.

An environment is saved when a goal successfully matches the
head of a clause. The information stored in the control stack
record consists of parameters already discussed.

Suppose we execute the clause :
P :- O, R, S.

Also suppose that Q has been executed successfully and
Prolog now attempts to execute R. Note that when the system found
a match for O it recorded the environment before the match on the
control stack. If R fails completely, then Prolog can return 6 ©

R

and retry it , hoping that the alternative solution for Q will
enable R to Dbe satisfied.

: = 1 kt] t takes place 1in the
Restoration of the Dback Lracky environuent T |
'PAIL' state. After that prolog goes to the 'BACKTRACK POINT" to

restart computation.

: : ful, and the environment

Sfehtion has been SUGCCESS 7 ’

Savedon%?:-oulnolgubcagi'15 proceSSi”g the clause which matched the
- egil

3 ' 11ing or parEent
: : ory simply. Since the €a
goa]:, s is done V,. ged on the control stack, the system can
: Ct tarting with the
: e b pallist! to" LheRyeCEOL &=
Eiissstlgg t-ih?nt;:iiliz%ﬂe ﬂ%ause. The frame polNnters and the parent
a —

must also be updated.

11 the
; : axecuted successfqlly whep a ‘
An entire clause nas 1:)::—:-91'1&n s fisthecd. This condition. i's

'.'gﬁals in the clause have D€

59

C

E
;.:_ Contf°11ing Execwstion : lush

which is used to scan along the goals

]
[_
E recognised when goallist,
E in a clause, becomes NULL.

Whecnl:u;:elau?‘?l has succeeded, control should return to the
parqﬂt : . € variable 'parent!' points to the parent's
environmen reécord on the control stack. ThrssesL s h "can

reconstruct the calling environment and ' '
Emrent W continue executing the

Note the difference between backtr

| acking and returning to a
parent. In the previous eXample, when ; 5

in which a%ternativg solutions existed. If R succeeds, the

1thout removing any records put

on the gtack during the execution of R. So 1f S fails, Tthe
computation of R can be restarted.

| The back§rack environment is usually advanced at the time of
saving an environment. There is just one exception. If there are
no other plauses;txalnatch the saved goal, the goal can't have any
alternative solution. Hence it makes no sense to backtrack to
this goal later. The backtrack env is therefore retained at the
last environment for which an alternative clause existed. This
allows recovery of some space from the trail stack also.
References to the variable cells below frame2 that got bound
during the current unification are stored on the trail stack. Now
on backtracking the variable stack will anyway be cut back till
backtracking environment's frame2, which is less than the current
frame2. Any newly pushed references to cells between these two
locations can be removed.

Once a parent environment has been restored, the parent
eglause lushes again. The pointerNgoal listiSrsiadvanccd¥to ! the
next goal pointer and the procedure goes to the 'NEW GOAL'

state.

' has no parent (i.e.
B -] ause has succeeded, and it
'Parent' points to the base of the control stack) then Prolog has

Yo § i he programmer. Thus a complete
returned to the original query by th :
fSOlutioi has been f%und. A+ this point, the system can print the

Values of the unbound variables given in the query.

' other possible solutions. These can pe
foundTger:r mian); Stglinit?:i all pogsiblg alternative clauses left 1n
the con{ olystack. Remember, the environment recorif W$lCh Egore
the alt;;native clause lists are only rempved on backtracking.
Af ' if more solutions are igs;rii, luS:
' ns backtracking to f1n e nex
mﬁfmggitinue to do this until al%
atches have been tried. When 'env
trol gkack there are no mRore
11s out rof +he bottom of the
view the execution of the Prplog
gh the space of all possible

IN008s o the 'FAIL' state an
Bt ion. The system W!
' Combj; - clause M
@ binations of e oh
4. lush ta

- PEocedure and ends. o
B 0ran as a depth first sSed

- Clutions to a problem.

e

60

........

controlling Execution : lush

§.i BIAVELE

p——

Given the following procedure for append

append([], L, L).
append([X4L1],L2, [X4L3]) :- a ppend (N IT57 T3)

consider the execution of the query

e append([lr 2]l’ [3: 4]r X)-

The query is satisfied after three recursive calls to the
procedure append. We discuss each call in turn, and give a trace
of the stacks (control, variable and trail) after each call.

FIRST CALL

goallist appendi(. [1,22 %] L34 P
framel = 0 (the frame consists of a single cell for
the variable X)

frame2 = 1

Uniification of the query goal with the first clause in
append procedure fails since the first arguments don't match. It
succeeds with the second clause causing a set of bindings. X in
query gets bound to the list [XYL3], X (of the clause) gets
pRlncdsto the integer 1, L1 to the list [2], L2 to the 1list [3,
4]J. L3 remains uninstantiated, and this is the value that will
pe determined during the next calls to append. This set of
bindings is shown on the variable stack.

The matched clause is the last in the append procedure.
Hence one need not backtrack to this goal. Accordingly the value

of bcktracking env is left unchanged.

During unification a reference to X (of query) is pushed
on the trail stack, so that this X may be unbound when
backtracking to resatisfy the goal. Since the system will never
WRCektrack to this goal, this entry 1s however removed soon after.
N3
ﬁi Having found a match t;hc::* system
'§Xisted just before the unlflczjltlon,
now tries to satisfy the goallist

stores 1ts state, as 1t
on the control stack. L E

A g B S
| L Al
3 - r‘f.,"\
Al 4
N

;,,@Ppearing in the body of
| dNother invocation of t he
“ Th tate of the systenm after the first call is diagrammed
£ @ sStace =

the matched clause. This 1involves
append procedure.

61

f ; Controlling kxecution - lush

1 fyame 45&naﬁh%T

; T

M ®) L3 — UN dlf

1 3&_ (e, L3 sy CB,#J |

= f’ X SNt 1

F 0l X B X L3] O 4¢- 45

3 : append i7d]
f 2 (1/ 1 L = 45 (EaT. 840 %) £5°

: \ ﬂﬁgcn
i 3’7&:»461 frﬁm&’ZD f?arﬁni__cnv %ck. ree c £ "yct it

rz z i{ p
wik track_ eny = -7 i goa (Eist.

!
i
!
%

i
s
LY
:'.-l-c.'j-"‘f 4§
g —
; = |
-~y A
f =11 el
: B et
.
3 PR~
-t e
. AR

Figure 8.4(a)

SECOND CALL
The goal

a ppe nclsE LA DT 3)

4 S
1 -'-] N -
- -

B .

L W}tflLI =[2], L2=[3, 4] and L3 uninstantiated, also unifies

~ with the head of the second clause. More bindings are created as
B the variable stack grows. The sequence of actions is very

?;fﬁ}.similar to that in the first call. The state after invoking
~ append again is shown in Fig. 8.4(b).

5

Bt
= ,

-l
s

e
Lal
a5
'-l
“%
= |

. THIRD CALL
The goal
append(@kEl; L2, L3).

i&l_- = .2 = [3, 4] and L3 uninstantiated, unifies with
'&%gégm}fggt éf;use in thé append procedure. The new frame created
8 on the variable stack has only one cell (for L of the clause).
'ﬁfThe bindings after the unification are shown 1in figure 8.4(c).

. , . matched clause 1s not the last one in the
This tlmﬁ tbhcektraCK env is therefore updated to the newly
e h % the current goal. The trail stack entry made
-_;aved staltu.s et n is also 1eft untouched. Fig 8.4(¢) sket;hg:s
".ﬁrigglinlilctatslijfter this call. Lush now attempts to satisfy
s 1) altatu : . d . 1 ~lause.

+ (rl:ull)s oallist in the body of the first clause

?iit- (I;Z

o

\ “
3 b
A 1.

gontrolling Execution : lush

Zrﬁ % Vo — wunde
*4L74 L2 e e
B o4 | L e)
P55 4 | X L g
“Ch| 5 i-; kL
s 0 | L2 e= gy ’
b 2] 0 | L s : O iriicF
nefoal 0 | % — 9t 1 tyrail- stack
e 0l 1 = g [X]L3]

v fyack env=-1 end 2 ”dalamj
Afkléwf i 1 = O © 51/ (ZZZZVL3) éuz??mm
append — 279clale
o, | O 1 O =1 = .([;,zjffs,&rl)()‘ L ?/QQ;H
éi%dﬂfﬁj Elgure 8 (ThH'")
faen]
o
f
£ 9:,!: 2 ; © o EEREn
— %/ L3) : :
(e 5, 4]
£ o)
e i e, rnad
T /37 ¢ {arese
[X/LZ;J 2 5 9 ®, / =1 (L;,L.r-/ <;) tn upfih:
‘ 3 e ne
F = L] = 2 G 1 (cff".! 7 x 1'-%1.. a;/i_t:
Dack track erv=I2) i 27 ¢ o

Bl ¢ e " e =1 (EL21Ee a7 %)

Lt o pe n¢
/ /7

Figure 8.4(c)

e st., being null, succeeds immediately. Control
B The new gostlisty et PR et
__j-::_;_;‘_: B ai{1.ble at parent e%\, (2) ensktne control stack. The next
= availab e y the 3F9 call succeeds, and control passes to its
- 90al being nn&ll ’ll) The process continues until the 1St call
,_parent (s ca; 1 t'ime the system reads of f the value of X from
l:llf‘zci:cgsi.ablit st{:a?:k -nd declares the query to have succeeded.

X

i
—
Bl
‘
&N
-~
D
~
=
[—

controlling Execution : 1ygh

: S are stored in :
corresponding atom records., a £1 in the procptr fields of the

whether the procptr points to g ¢ fFunction or a clalse 1le

hie changes ¢to be made ; . _
: : 1n" Iush
predefined predicates basically d tor interfacing the

: : eal with ch :
a goal 1s predefined, ang cal ecking whether or not

- : ling the C f i W et o
otherwise the goal is handleq normalg € tHonii s EaE S

A predefined goal may fail, in which ¢
deep'backtrqck, Or 1t may succeed,
continues with the next goal.

succeeds deternuhuately, nothing else needs to be done, except
perhaps to remove any trail references to variable cells above
the backtrack environment's frame?2. However, if the predicate
has non-determinate exXecution, the status of the current goal
IEEESENto " be saved, and backtrack env enhanced. Since the
pertormance of such predicates may, in general, depend upon the
number of time the goal is invoked during backifrack M Ehemcalll
number needs to be included as a parameter to the C function for
the predicate. This is handled by Usiing «'c st oS tomettt e
call number (instead of a pointer to a clause list) whenever a
goal is predefined.

ase the system does a
in which case the system
If the predefined predicate

Thus, the C functions for predefined predicates have 3
arguments :

1) GOAL

Pointer to functor record of ‘the goal to be
satisfied.

2) FRAME

frame in which values of
Bags e oLt the
variables appearing 1n the goal may be found.

3) CALL NUMBER

the predicate 1s being called

he value is 1 for the first
i cular goal. T
from a partilcu

' for the next
- cktracking call, 3 :
@211, 2 for the first gid S0 onh, The parameter 1s

: 11 :
backtrafclf lfnogr :Oan__d;etermi“ate predicates only.
meaningtu

The number of time

64

L

RSB S a Ry

dway, Thus the control

The Cut Operation

CHAPTER NINE

THE CUT OPERATION

Cut 1s 1mplemented through a C function like any other

predefined predicate. Three important actions are i bar
encountering a cut in a list of goals ; pecrform

9.1 RESET BACKTRACK ENVIRONMENT

Cut semantlcs. demand that backtracking to the left of the
glithgoal cause tatlure of all goals upto,+and including, S the
parent goal. This means that when Prolog backtracks to the left
of cut, 1ts Dbehaviour is exactly as if the parent goal has
failed. Therefore on encountering a cut in a list of goals, the
backtracking environment needs to be reset to the backtracking

environment of the parent. The later can be recovered from the
control stack. |

bcktrack env = control stack[parent env].bcktrack env ;

9.2 SHRINK TRAIL STACK

ilce the next backtrack is to occur to a much senilior
environment, all trail references to cells above frame2 of the

‘new backtrack environment can be removed. Only the entries made

since invocation of the parent goal need to be checked for these
feferences as the new backtrack environment was already the

backtrack environment for the parent goal.

9.3 RECOVER CONTROL STACK SPACE

s to the new backtrack environment which
arent environment on t he contpol stack.
urn is to the parent environment.
ds above the parent's environment are

The next backtrack 1
is definitely below the p
The next successful ret
Therefore all control recor
Useless, They will never

eNVironment can be recovered.

- parent_env + 1

A Pr—-e’.defined Predicates

CHAPTER TEN

THE PREDEFINEE PREDICAT§ INTERFACE

im - |
inportant predefined prediCm:(_}gﬁlernentat:u:m of some of the more

op

op 1
P 1S used to create a new operator definition. It is

supplied with the operator name. - [£1 ' '-
precedence as parameters. r 1ltS specifiication,andits

OP malntains a record of all existing operator

gzl‘f;;]itions in an Oopeérator table. The table has the structure

/ _

A o D P+ AL om
N @

ey
L afom wn%aini’:-]f? Ak e

@79.4,7-';-'. for mnarmcC .

Each element of the operator tat?le has a p.ointer to a
t of operators that hash onto that index. A list element
A pointer to an atom record'that stores the name of the
\tor. It also contains a field that describes the the

 Pfecedence of the operator.

sed the restriction that all operators of
have the same specification. The array

]:ifor prec maintalns the specification of each precedence

dence level
i may share the same prece ’
}'gnMultiple oPeraetcOirficatii/On' When all the operators of this
1Ce the same Sp Eamoved, Lt is necessary to reset t he
ienc:e have been favel EO null.This housekeeping 1s done by
céation for that léev the number of operators that

q i stores : | _ .
rtalzy num_prec, wdhelnCChG- When, as a result ?E ano ot%e;iai?‘;
g 2ame prece hat pecedence level is set to 0 t

on, num prec for tha P get LO null.

Or prec for that prece

We have 1mpo

dence is also

66

AN

predefi“ed Predicates

operator, and to
re
T = necessary. S

gUSE] s the Prol
: 0
statement. 'is' allows us to e

An ! 4 ' 1
15" oOperator is used as in

LS XS 2 0 /8 3

Note that the right hang s'i.de Noif Wtth e W iis GEF R

arithmetic expression which n j -
at the time of call. ay contain variables to be evaluated

b Lo evqluate the right hand side of an 'is' predicate,
wi: afrgcur51ve tree evaluation procedure. The parser creates
a tree o Unctor records corresponding to the expression. The

mmluatumq prpcedpre recursively evaluates a numerical value at
each node, which is passed upwards.

The algorithm to be applied at each node is as follows
- 1f the node is a leaf node

0 - if the node is an integer node, return the
29" integer value. |

- if the node is a variable node, then determine
the binding of the variable.

- if bound to an integer, return the integer
value.

- if bound to a structure, evaluate the
structure recursively and return the value

obtained.

-'if the node is a tree node

_ evaluate the left and right sons recursively.

e oply the operator specified at the node.

- return the integer
the value returned is placed in
U e level,_ ble on the left hand side 1S

the left hand side is an integer or
then a conllnn,‘iﬂiﬂll of values 1s

value so found.

?ntiated to it. In case

67

predefined Predicates

done and success or failure appropriately returned.

The operators allowed in

he % symbol stands for 'mod'. Ts™arel £ = Ry AT

T
File handling

Prolog allows files to
4sing 'sgae' or _'tell'. These pred
current 1input file and a current output file. These are stored in

the globals in file and out fj . '
gtored FIUNSED and out oy 0 lle. The pointers to these files are

be opened for input or output
efined predicates maintain a

e vsdetault in fp is stdin, out fp Is¥stdout®a 1]

as well as out_fl}e are NULL. When a ééé)or tell pr;gic;%§1%2
mmlua?ed, tim{ lnput and output file values are changed
sccordingly. Files are opened by fopen(), Tandtcliosed by
fclose(.). Input.of characters is by getc() for get and for getO.
output 1s by using putc() . All character input and output is in

Fhe form of ASCII integers. The characters read in are stored as
integer records.

| read(X) , used to read in a term, is implemented by
parsing the term that is input and instantiating variable X to
I1t.. Display uses a set of recursive top down procedures that
print out the existing clauses in the form they were input by the
programmer .

consult

This predicate allows the user to read in and execute
clauses and queries stored in a file. The consulted file may
itself in turn consult other files, hence the predicate needs to

handle this nesting of consulted files.

The me thod adopted is to maintain a stack of consult
files, The top of the consult file stack is marked as the current
file, When a call is made to consult, the current line number 1is
Saved on stack and the consulted file is pushed on’the stack as
the current file. Files are popped when the end| of file marker 1is
€ncountered. If the new top G stqck element 1s uqopeqed, it is
Opened and we start tO read from line one. If the file 1s already
Opened, we resume reading from the line a'fter the call to
consult, Since 1line input for interpretation 1S alwayhs fdrlom t he
top element of the stack, we can automatically handle the

€Xecution of clauses and queries in the consulted file.
'consult' is a list of files,

: . in the inverted list order. Each
ghin B Nlisc is pushed or statcok null(unopened file). The topmost

lle pointer on stack ijg set o AP e
’ 1] as the Current file. S "Ne enc
2;1?51118 thenkopenefd aanéih 1zlgarked he list appears; the next
| @ marker oL €

tle is opened and consulted -

When the parameter for

are that the consultation 18

' ' sult'’
The semantics of cons

68

defined by the paramete
either unlinked, in the o

being edited. We firgt
procedure table,.

predefined Predicates

initiated only after complete execution of all the goals that

follow the consult goal in a clause. We
B eonsult be the et poii ks would thus recommend

delete and deletek

I'hese are implemented by tracing the list of clauses

£ using the procedure table.The list is

: ase of delete, o :
removed, in the case of deletek. r Or the kth element is

edit

Edit allows a procedure to be output to a file for
trace out the procedure using the
.) |Then the procedure is listed onto a temporary
flle. To edit this file a System call is made to one of the

standard editors. Finally the edited procedure is consulted to
recreate the database records for it.

unix

The parameter to this predicate is made the parameter
of a system call, thus allowing unix shell commands to be

executed within the Prolog environment.

10.2 How to write your own predefined predicates

- e k - "
PG e

This section is meant to be a practical guide to those
programmers who wilish to increase the power of the Prolog system
by definition of new user defined predicates.

The action defined by predefined predicates usually cannot
be captured within Prolog. These actions have effects that extend
beyond the Prolog system and can hence be dealt with only in the
implementation language.e.g. file handling commands.

We will describe the predefined predicate interface in some
detail. This is to enable future additions to the system. The
motivation for this could be ease of programming by using the new
predicate, an attempt to perform actions beyond the scope of the

language, or an added gain in execution speed.

All predefined predicates are defined by C functions. These
are placed in the file 'predef fn.c'. Pointers to these functions
are kept in a table called the 'predef_ table' which 1is found 1in

file predef.c .

The predef tableijsactuallyeynarragcﬂfATOM_RECORDnghe
procptr field of the atom record is a pointer to the ?qngLioT
whose name is given by the name field of the.dtOT‘LGCULd. The
ils predefined field for all these atom records 1s YES. (1).

file predef.c. All

5 f ' ' lalised 1in the
The predef table is iniltila fiald of the atonm

Predicates in the table are sorted by the name

69

predefined Predicates

binary search. Hence, any new

€ sorted position only.
g:gi::c:imien Osontsh%etdsfiner? cl%nstant NO OF PREDEFINEDYPRFE%I-I?;;%
set of predefined functions defeinappropriately changed., The

ed to be
should be updated to include the new function:BXtern AP sl

The function itself will be calle

three parameters. These are S R |

fn_rec_ptr : this points to the function record whose

termlist is a list of parameters for the
predefined function.

frame : this is the base of the stack frame for
the current clause on the variable
stack. The currently instantiated value
of any variable can be found by looking
up i1ts cell in this frame.

n : this'is the nth call to this funetion
during execution of the current clause.

i

¢ e.g a call to the predefined predicate 'read' will be as
Ffollows -

gt

EE=—

— ey
,:,‘,"._ :.-

- . i': =3
ab e
o R

read(fn_rec, frame, n)

- where fn rec points to

:"“r_-.'
7

AL e
IB’S"H }‘/ef o 79/_’.”_1/.4?7&_‘_‘.“?{‘] 9_]_ ?
B »rﬁzw \pt-r to ot fn for read’ N

frame is of type integer and gives the index of the base of
f %me stack frame. As can be seen, the parameter for read, i.e. X

3f;%'available as the first term in the termlist for the record
ﬁgﬁ@inted to by fn rec.
"

a
e

P 0 Here are some guidelines to follow while writing predefined
.

8 Eradicates.

S

.
e 5.
¥ a1

f the structure of
thorough understanding of .
i nce the predicate will probably need
he other part of the database.

B Pirst of |
~ the database is essential 81
(IE0 access or modify one or t

1L o
B
I 23 - =4

B There is no guarantee that the user will input any or all of

P I I A Y 1L he
the ‘eters for the predicate, or that LV
{;H Jl'l:tceersss i;ri)]/, y Pser a()lf the proper type. Hence, l] l" t- 0 \;a:lr.‘\ | ixlt\.;\ x_]::,: ;
B Ve osrror handling is desirable 8o L'T H;Jituhua
"ﬁ?@rammer errors Lt he HYHtUm does not CLﬂqH;HJ2$Gnilhdt Lt
Wfere dereferencing any pointer it must 2 88

L ';.-. :

. 70

predefined Predicates

- The function returns
e o example, the '>' predicate
gument is not greater than the

The Predicate ceturns DET SUCCESS if it has

The predicate returns NON DET SUCCESS if the predicate must

be retried for an alternate soluti .
. solu
aCross it. tion when'backtracklng occurs

Finally, as a rule, the predefined predicate must be tested
on a copy of the Prolog system before it is integrated into it.

There already exist certain core functions in the file
predefﬁﬁnu: which make the task of writing predefined predicates
much glmpler; These core routines extract the parameters from the
termlist, automatically dereferencing variables and carrying out
full error handling.

The core functions are

l: char* extr value(fn rec,frame,flag)
FN RECORD * fn_rec;
int frame;
TRt A
This function determines the value of the first

parameter in the termlist .

- if it is an integer, or a variable instantiated
to an integer, then flag is set to TYP INTEGER and the function
returns a pointer to the integer record.

if it an atom, or a variable instantiated to an
TYP ATOM and the function returns a polnter

atom, flag 1s set toO
to the atom record.

_ if it is a functor, or a variable instantiated
flag 1s set tO TYP FUNCTOR and the function returns

to a functor, 3

a pointer to the functor reco

unbound variable, thcg the £lag 18
function returns 4 pointer tO Lt he
renced variable.

- 1f£ it 18 an
8¢t to TYP UNDEF and the
Variable cell for the derefe

Thus this functioni”““”‘”nﬁﬂi B o)
Of the first parameter of the cal l; | ‘l: B O
QUtomaticaj_ly § 1£f the luntttrlnnﬁl“ l"i tt;n: Sy
. ® runtime error and returns control tO

to determ ine the value
handling L= done
it points Qut

/]

n
.
5
' &
¥
1 4)
7
I
y ¥
.

fiffined by the atom name

Ewedefined Predicates

2 CLAUSE RECORD * ex
FN_RECORD * fn rec
int frame; 7

tr_clause_list(fn rec,frame)

This returns a point '
) | er to the clause list for the
procifure wgosg name 1s given in the first parameter of the call
to the predefined predicate. The function is useful in cases

where one wishes to manipulate clauses whose predicate name has
peen passes as a parameter, e.g. in delete and deletek.

8 extr clause(fn rec, frame, il, i2)
FN_RECORD * fn rec;
int frame; A
i ged S e wadi ol

This looks at the first two parameters of the call and
extracts their integer values, dereferencing variables 1if
necessary. The values are returned in il and i2. The function 1is

useful for defining binary predicates on integers, such as
comparlisions.

4: dereference(frame)
int frame;

This is the standard function used to dereference a
variable at position 'frame' on the variable stack._It returns an
integer which is the dereferenced position of the integer on the

stack.

5: run error(message)

char * message;

This is the standard function used to trap errors in
the predefined predicates. A call to run_ error prlqti:thieﬁifgsgi
on the standard output andnqups'todthe point w
processing of the next clause is 1lnitiated.

6: get proc(name)

char * name;

This procedure, when supplied with an atom name,

he procedure
: dure entry record for t _
returns a pointer to the proceand if no such procedure exists,

returns a NULL.

72

grror Ha ndling

CHAPTER ELEVEN

ERROR HANDLING

The error handling strateq]
dictated Dby our mode of interpretation., AaAll

processed as soon as they arrive. Hence, on any error, we are
a?le to skip QO the end of the input line (1n 'panic mode'),
without appreciable discomfort to the programmer.

input lines are

The basic Strategy to handle errors is hence to print out an

oL essage, and then totally disregarding the rest of the
input line, wait for the Rext linea,

This strategy is well supported by the 'setjump' and
'long jump' facilities avallable in C. When setjump is executed,
the current environment 1is saved. A longjump done at any
Subsequent stage skips all intermediate 'return' levels and
returns to the point where the setjump was called, with a value
specified at the point of the longjump. This enables us to

terminate multiple layers of calls abruptly, and to return to the
'waiting for input' mode.

Practically speaking, a setjump is done in the user
friendly interface just before the input line is expected.
Later, on any error, an error message is immediately printed and
a longjump done to this point. The value returned reflects the
position from where the longjump was made.

The various values returned by longjumps are stored_in the
file 'errcode.h'. Processing is done by the user friendly

interface depending upon this value.

i ‘ lso has built in error
The redictive parser table a .
handling: pjj1<mase of a negative parser table entry, the error is

' ' ' inting the message
1) handled. This 1s done by prin
235?2:;;§§in57t0 the negative value determined from the error

message table. Subsequently, a longjump 1is done to the user
friendly interface.

' ' ' the parser 1s
handling routine 1n . ' 3
' o er(rigsrsage)'_ In lush as well as predefined predicates
irtegore—iiroerrror(message)' where 'message' is the error message
LS s

to be printed in each case.

79

pile Organization

CHAPTER TWELVE

ORGANIZATION OF THE PROGRAM INTO FILES

12.1 INTRODUCTION
a5

The Prolog system is s

files, which are describadtgpread over almost twenty different

elow.

The convention is that .c files have C code, .h files are

header files COntaining fde f i : : :
T R : - lned variab
contaln initializations to be #included. A

12.2 FILES

#

The files that constitute the Prolog system are -

Header files

l1- universal.h - contains universal definitions for
- equality,inequality, success, failure
etc. It is to be # included in all

files.

2= deflex.h - contains definitions of terminal
types used by the all parser and
executor files.

3- defpars.h - contains definitions of non-terminals
and record key types, for use by the
parser.

4- errorcode.h - has definitions for the error status

returned by a long jump.

sl eons def.h ~thas the constant declarations that are
i used to control static data size e.g.

the sizes of the various stacks

6- typedef.h - has the 'typedef' declarations for
defining all the structure types used

in the database records as well as in
various stack elements.

7= incllide.n = has a list of all files toO be $included

everywhere. Thus, all one QOes is to
#include include.h, which then
automatically #includes all the required

files.

Code files

1- lex.cC _ has the code for the lexical analyser.

74

pile Organization

2- memman. ~ '
c has all the functions used to allocate

Space fpom the system. It includes
ftlnf:ta.orls s uscth as
get_integer record(), get atom record

€tc., which allocate the database
record types.

=" hash, - : :

h.c has a single function, which hashes a
?hgracter name onto a space of width
size'. It is used as a standard hash
table lookup function.

A= parser.c - contains code for all the six parsers.

o= uULl.c - has the user friendly interface.

6="Ereeaic - contains @ the " functiionsEethatE
recursively free space used by a
database record.

=""Dr INE.C = S has functionsiiusedistoN pri NGl ENNa
database record to help in debugging.

g=Nlistic =" has@ifiuniction's® used S tolli1i's CRNOUtRERA

clause in the form it was input by
the programmer.

9- predef fn.c- has the code for the predefined
predicates.

10- predef.c - has the predefined predicate table as
well? alsEEther " necessary e xtenn
declarations for the predefined
predicate functions.

Included files

1- fndef.inc - has the extern declarations required
by thelparsets.

2— error message.inc
= _ has the table of error messages used

by the parser.

3- parser table.1lnec ;) j
5 — has the predictive parsing table used

by the clause, structure and list
parsers.

75

CHAPTER THIRTEEN

PROBLEMS FACED DURING IMPLEMENTATION

We faced several si

gyhich we discuss below. dniticant problems in out implementation

the most difficult problem was that
This caused us much worry since

: ; tegies was of any use. However
after consultations with our project guide, we developed a stacé

base d ad hoc mechanism that handles the problem well. This

strategy 1s discussed in sonm ' ' :
e detail - :
the atf and term parsers. in the section dealing with

Another problem we faced was in the creation of the database

during semantic analysis. Consid i ; : :
: . er the £
an 1lnput ollowing situation. Given

A := B,C
* _ where A, B and C are atomic formulae.
When this 1s parsed, the datf parser is required to parse D,E. It
does SO by calling the atf parser for parsing Band C, then
creating a new ',' type node in the goal tree. Finally, B and C
are hooked up to the goaltree node.

The datf parser needs the parsed records for B and C to be
placed in its operand stack. Hence, the atf parser must know that
whatever records it creates must be placed on the datf's operand
stack. This necessiates a parameter passing mechanism between
parsers. The parameter we pass Islthe lllocationi«. s Chils vi st the
position at which the newly created database section 1s to be

linked up. Thus, the datf parser calls the atf parser with the

location as the top of the datf operand stack. Automatically,, the
At Nnarcorw i ll1adlRnkasups 1S records onto that focation.

Subsequent processing can be carried out by the datf parser as
required. |

A similar link up problem is faced within a parser. For
example, 1n the list parser, one needs to know where to add the
next list record. This is solved by maintaining a global which

always points to that location where the next element is to be

linked up. A similar global is maintained in other parsers also.

use assumes a clause to be in the
oes not expect any disjunctions in
the set of goals to be satisfied. However,we wished to allow
users the benefit of using disjunctions. To permlt this, yet to
Bloh an efficient interpreter design, we use the concept of

€Xpansion.
The use

The interpreter that we
iorn clausal form. Thus, it d

r Ainput consisting of arbitrary conjunctlons and

76

Probl ems

P i The tree is
: . a disjunct of conjuncts form.
Finallyh:af:COhf C‘intJunCt l1s placed in a copy of the ciause reco;nd
and a C ' @-térnate clauses is built up. Thus the semantic

lons are fulfilled, and the efficiency
1s also maintained. The

Besi1des these design problems, we also faced several

probleTS-Vﬂlth the language, C. The most irritating one was that
og varlaple names. C allows variables of any length, but only the
first elght characters are significant. We had decided upona
convention that all global variables and function names should be
sty eel £ descriptive. This necessiated using long variable
names. Because of the 8 character limitation, it became rather
difficult to select suitable names, Similar problems were also

faced with Fhe_preprocesor statements, which also have a limited
number of significant characters.

Two problems we faced were due to bugs in the C

implementation in the OMEGA 58000. The first was in references of
the form

a —> b => c.
By C convention this is equivalent to
(Ra=>ub) =2 ¢

However, the C compiler wrongly parsed this and this
resulted in highly monstrous and unrelageq run time errors. We
overcame this problem simply by explicit bracketing of the

references.

The second problem is fairly critical and has not yet been
solved. This relates to memory management routines. C provides
two basic functions for managing memory. These are malloc() and
free(). Malloc returns a pointer to a freefmemory area; qnd friee
returns it back to the system. The problem we fgce is that
whereas malloc works perfectly, whenever a free 1s done, any
subsequent malloc results iqearun tlme'error.VhasuspecF that
there is a major bug in the implementation of free(). This may
Balise us serious problems later; when larger Prolog p;ogramsdare
run on the system, since free space will be left dangllng:_in Wi
shall be unable to recover it., Therefore we 1ntenc? to wré eeiie
own memory managing routines that shall allow freeing and r

of space. However, this has not been done so far.

7

yser Manual

CHAPTER FOURTEEN

USER MANUAL

Introduction

This ma s i
. ﬂﬁ?%lls lntended for a user familiar with Prolog, but
- b.ementation. Here, we discuss some peculiarities
0 3 P cmeéntation. We also discuss a sample Prolog session
in order to acquaint ney users with system features.

14.1 The User Interface

The Programmer interacts with the Prolog system through

Prolog's user friendly interf ' ' '
L] [] (] ace L] T
facilities - ¥ his provides two major

)= Logging cﬂf all the correct clauses and queries
enteFeQ in the current session onto a workfile
specified by the programmer.

2) Most Prolog systems, on invocation, put the user in
a mode that allows only queries to be input.
Consulting files is allowed as a valid query. This
allows the programmer to read in previously stored
clauses or to type in new clauses from the keyboard
by consulting the special file "user".

The entries in a consulted file are appended
to the database created during the current session.
The consulted files may in turn consult other
files, creating levels of nesting. We have adopted
the following nomenclature for naming the levels of
nested consultation. Level 0 is the outermost
level, where the 1input is expected fromthe
kevboard. "Neisted levels have correspondingly
incremented levels e.g if the programmer consults
the file "alpha" from level 0, then file "alpha" 1is
at level 1. Any file consulted from within "alpha"
would be at level 2 and so on. Normally, a Prolog
system allows level 0 input to be from the keyboard

alone.

We have allowed the programmer the opt%on of
initiating a level 0 consultation from a previously
stored file. After consultation of this [ile the
input is resumed from the keyboard. The motivation
for this approach is to allow the programmer F?
store gqueries toanhichfmaﬁesires a”‘?“sweﬁtTh}f
is not possible in most lmplementaplons-n{ﬁy.f
because the definition of consult stlpuyflﬂuLth

ueries in a consult file are to be processed, bu

20 answer is to be printed out. The implication 18

'I-',j,'l"

- Ty L
e

.-:Jf:_,;.':: _ 78

i’
|
i
[

A
I.‘!'

that only queries a
t level 0 can have their their
answers printed out. Allowing a file at level 0

means that queries in that fil '
their answers printed out, o M i

rule ﬁosf Prolog systems do not allow facts and
s to be input from level 0. We have allowed

clauses to be input from level 0, assuming that t he
query

7= consult("user").

was intended.

14.2 Using the System

The programmer invokes the Prolog system by means of the
command

prolog [~ inputfile] [+ workfile]

| Tﬁis means that the level 0 input will be initiall Yy REE O
inputfile , if specified, and correct clauses and queries will Dbe
placed in workfile, 1f specified.Jﬁmadefault.inputfile:is NULL
and the default workfile is "wkfile.prlg". The user may disable
logging by giving a single '+'.

A few hints to programmers are in order-

1- Since an atom will extend over all symbols till a
'white space' character is reached, all operators must be
followed by a space.Otherwise, the succeding symbols will also
beconsidered to be a part of the operator, causing much cribbing
by the parser. FoOr example 'Y is 2*(2)' will be wrong, 1t
should be given as ' Y 1is DR (2)

- Always remember to start a query with a '?2-', else
the query will be converted to a fact, and will be stored in the
database. The next time you pose€ the same query, you will get a
YES trivially, and will be forced to edit the clause to remove

the of fending fact.

3- If the system takes an inordinately long time to
respond to a queryy most probably the query g infinite, "YoOu
should then wait patiently as penance, t111 the control stack
space runs out and a run time error is printed. The stack 1s
then reinitialised, so you may start afresh without any problems.

4- If you had saved the session on the stan@ard 1og

file, i.e wk f iile.prlgy Lthen yeu must rename this file

.-immediately after the segsion 1in order Lo saverlt. Else thlﬂ

 Will be erased the next time you work in prolog with default log
Wiile,

:é 5- In case you have hit a particularly noxious bug, and

79

(wgperately need to remedy it,

aqailawb;-:e“’;rth cDgr;tNira'j Sharma, and in the departmental library.
oti?erce e B};rk : acting us (the authors) c/o Dept. of Computer
gcience, ciey,; CA 94720,USA for S .Kechay o ¢/ o . DepEitof

computer Science, Stanforgdg Universit CA 943
: | SA
1,5.Mumick, and we will Lry our best to hefg you. s e

a copy of the listing will be

14.3 A Sample Session

S — (S

We start with the initiation of the session with the command
prolog —likes.prlg +10g.ptlg

The Prolog system will now read in the file likes.prlg,
create Fhe database specified by the clauses in this file and
also prlnt Out answers to queries in the file. As the clauses are
read 1n, they are also printed out on the terminal.

likes(mary, john).

likes(john,charles).

Pikes (X)) = likes(X,B), likes(A,Z)k
?2- likes(mary,X).

X = john

The system now waits for a response from the programmer. If
the programmer wants alternate solutions , he must type in ';',

else to suspend execution, he must type in '.'.

X = charles

Assuming that the file likes.prlg is now completely
processed, the system now displays its standard prompt.

>
The programmer can now add clauses to the existingdatabase

and can also make queries on the database read in.

> likes(charles,mary).
> ?2- likes(mary,X).

> X' = john

> 7

> X = charles
27

> X = mary

A

The programmer can also consult any other Prolog file. e.g

Sve- congul t tdiglikes.prlg').

' The clauses read in will De displayed, but answers to the
§ eries in this file will not be printed.

dislikes(mary,john).

80

User Manual

paranoid(X) :- 1ik sl
e paranoid(mary).eS(X'Y)' e L

dislikes(john,charles).

End of file

S P

7 LES
2

Paranoid(john)

The session isgs terminated b ' ' '
the predefined dic : :
or by the end of file character g;. : i

>2= quit().
The system replies with-

End of Prolog session.
GOODBYE

At the end of the session, the workfile, consilstingrof the
correct clauses and queries typed in will be -

likes(mary, john).
likes(john,charles).

likes(X,Y) :—= likes(X,A) , likes(A,Y).
likes(charles,mary).

?- likes(mary,X).

2= consult('dislikes:prlgEs)e

?— paranoid(john).

14.4 Modifications to Clocksin and Mellish

1- Consult cannot be specified as a list of files in.the
list format, though a sequence of comma seperated files
can be an argument to consult.

72— ':' and ',' are not defined as operators. This prevents
the programmer from using a disjunction as an argument to
a predefined predicate such as 'call' and 'not'.

g nd (A ries hisedifor drouping disjunctiens rather
than '{' and o

. . : :
The cons symbol for list representations 1S '&'and not

tyfy' specification of operators is not allowed.

Crammar rule input notation has not been implemented.

81

goer Manual

e.g trace() instega
Btedicate. d of trace for the '"trace' predefineé

§- We do not allow 1j
L3€
MUSt be specified ae [ihﬁiﬂgﬁ]?f the form [X, YYZ]. This

9- Like the ' '
tab predefined predicate, the newline predefined

predicate also take
Lo be inserted. > @ parameter, the number of newlines

14: 5 Restrictions

\

1- All operators of the s
; ame rec
same specification., P edence level must have the

2- Once defined, an o - .
perator cannot be u
structure notation. sed 1n standard

3- Quoted atoms and strings may not extend over two lines.

14.6 Limits of the system

. The system is bounded by finite upper limits that we feel
will be hard to exceed. In case of any problem, the programmer
fley change the controlling constant definition in the file

cons def.h. Some of the upper bounds are -

1- A clause may extend over any number of lines, but each
line may contain at most 320 characters.

27— At most 50 levels of nested consultation are allowed.

SENiliere ‘can he at most 50 variables 1n a clause.

ELC.; ke etc.

14.6 Available Predefined Predicates

At the time of writing, the following predefined predicates
have been implemented -
op 1s see seeing seen tell
telling @ teld put get get0 read
display atom var nonvar integer Exrue
atomic fFasl listing consult < >
=< > = skip U rop delete
deletek unix edit
] ' ohid i he other

+ [or the predicates discussed below, a%l t

. - in Clocksin and Mellish and our

Predicates are discussed | '
implementation is exactly according to this book.

rop(X)

unix("X")
This allowsa

: : unix shell command to be executed from
within the Prolog system

. The command X is executed.

edit(X)

This allows a procedure named by X to be edited, and
the new definition of the procedure overwrites the old
geEinition. The Procedure is first put in a file, and the user
WSS s choice of ed, SPY Or se to edit it. The edited procedure

then replaces the o014 definution of®theprocedure in She
database.

83

references
REFERENCES
1) A.V.Aho and J.p Ullman: Princip] ' '
| .D. : es of
Addison Wesley, 1977, : e
2) Clo;k81n and Mellish: Programming in Prolog.
Springer Verlag 1981,
3) Kernighan and Ritchie: Programming in c.
Wiley Eastern, 1979.
T DS ﬂ. D. Warren: Implementing Prolog : Compiling Predicate
Logic Programs NMOdH T,
DAI Research Report No. 39, University of Edinburgh, 1977.
5) C. A. Sammut and R. A,

Sammut: The Implementation of
UNSW Prolog. ~

The Australian Computer Journal , Vol 15 y No 2, 1983,

Other secondary references are

6)

7)

M.Bruynodghe, The Memory Management of
Implementations.

Logic Programming, Academic Presisy = 1982,

Proleg

M. H. van Emden : Programming with resolution logic.
Machine Intelligence &l RO a7

R. A. Kowalski: Predicate Logic as a Programming
Language .

P wLEFEP 74 . 1974

84

APPENDIX 1

Below is the grammar for Prolog in an eas
form. However, left recur

sion is present, and left factoring
needs to be done,

CLAUSE -> BRI

1 ATF :- DATF
1 2- DATF .

DATF => CATF ; DATF
1 CATF
CATFE -> ERATIS S ECOAL
1 GOAL
GOAL - > ATFE
1SV DATE T
ATFE -> atom (TERM, i RN)
GRS T
1 OP_CONF
TERM -> a tom

{ 1nteger
§ variable
1 ATEF

LIES T -> BRI RM Y, [ST
9 [TERM 4 variable]
I

§ string
(S50 (“EERM' , LIST®
 NISTERTETER,; .« .«

OP CONF -> TERM op
=, ¢ TERM op TERM

¢ op TERM

' sents a user defined
] do terminal that repre
where op 1s a pseu

Bo

APPENDIX 1A

The grammar after removal of left
actoring is given below.
etter nonterminal

lonterminals are used

L _ .recursion and left
€ convention 1s that a one or two

13 used to do left factori '
n and rimed
to remove left recursion. : 7

CLAUSE -> ATF C

CLAUSE . >~ DATF

(@ = ;

C -> :- DATF .
DATF -> CATF D

D =2 epsilon

D -> ; DATF

CATF =" SCOANCATED
CATE" -3¢ 1 CATF

CATF' -> epsilon

GOAL =5 ATF

GOAL -> S DATE +

ATF —> STRUCTURE
ATF -> LEST

ATF = TERM op TERM
ATFE = op TERM

ATF —> TERM op

TERM —> STRUCTURE
TERM = LIST TERM'
TERM —> op TERM TERM'
TERM -> integer TERM'
TERM -> variable TERM'
TERM -> atom TERM' |
TERM -> (TERM) iERM
TERM' = op TERM TERM'
TERM' => op TERM'
TERM' =D epsilon

1S T -> str ing

LIST -> & (TERM , LIST
ST -> L

L ->]

L -> TERM M

86

M =2
M >
M =
N =
N =5

LTERMLIST ->

LT =5
LT ->

SIERUCTURE =>

STERMLIST ->
STERMLIST ->
S ->
S ->

1 N

, LTERMLIST]
]

variable]
BIST |

TERM LT

ry LEERMLIST
epsilon

atom (STERMLIST)

TERM S
epsilon

T EERMIBEST
epsilon

APPENDIX 2

THE PREDICTIVE PARSER TABLE

L5177
8V

W W71

gl

WIF1)e»

ok

SWd21 ¢

2~

Ny

AVG

Jo217 434,

Zie

L9y

e
by

Ls I1
gl

/e
Ly

S NYZL

22LYy |

7% |
27 |

o7 4
.Zu%\w

U467y |

s‘lunZ1

LY |

3 § ,_
l&.nuu.t%\ﬁQ__

7427 |

s P AG f

2y Y

.

5220044 |

1577
WYZLT €
o2

WYZL T ¢

T
Sl

L5117

g:ﬁﬁN

2L 47 b

\\E\TQ = H

o
u,.wD,wN

2=

sMqu‘

W INdF1

¢ i

SWEFL

g

W WPFL

el

SINIFTL

g

2LLY |

.mwﬁ.ﬂw\, |

W IN2FL

A

S WdFL
S

214 |

W wddlt

(A

‘WYL

m __

2£LV ¥

© Y

LS LT

0 4

L5

0 W

z

LT HYFLS \ 2

\Nm\:\qu
igadll

-"-l-......____._‘ - A L ¥ T
NRT— .

APPENDIX 3

FIRST

FOLLOW
- atom sf*v-i,ng? [s
2P Mﬁf&? variabée (#'
B
E afom '5'5«2'”- E' in teser .
PATF 'V'a'r—»ba'bicg ol 7 /)5 f
P 5 E o=
Vs atom Sf’lﬂ.n L—' 9 £
lJ#TF' iwéégcr fua.g;—-{a,é(e P(] J)}
AT o T 5
(04 L atom stremg [”77"'”{7"’ var(] y 3ur
-A T atorm S’(.”n'ni [op énéefcr (ST }
. Vavrta ble R
STERMLIST atom 5‘1'74”5- op dzfcfer vewrable() 4
- :)
"?E'RMusT atom SEvin L- nteze, IR o
Varia_%ﬁeg)-c i ZD y ~Jo g /O
g IEFErS
B N SHTT
1 . e T
L j ‘__F_#_"#,i___,- /D_{
L - - :
M 248 ST . 3. qp>)
i _-'F"H-_—_.“H-_ A) ‘
‘ _&7—-__ vart aé[f Séring L. § g A | Via] s
s D _ ' E
TERMLIST a 4 om 460%'7237 . P Mctger]
s 6 areaodenl o 90)

£ B &, | |
_ I T : i {3 s_-') q

